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Abstract

Researchers have applied linear dynamic panel data methods to analyze a panel
of binary choices while allowing for individual-specific unobserved heterogeneity and
dynamics. This leads to IV/GMM estimation of a dynamic linear probability model
(LPM) with fixed effects. In this paper, I give a set of pros and cons of this pro-
cedure and conclude that this procedure should be treated with caution, especially
in fixed-T settings. Even if we ignore the possibility that average marginal effects
may not be point-identified, directly applying IV/GMM estimators to this dynamic
LPM identifies incorrectly-weighted average marginal effects, which may differ from
the true average marginal effect, under large-n, fixed-T or large-n, large-T asymp-
totics. I also show that there exist certain DGPs that can push the large-n, fixed-T
limits of these IV estimators outside the identified set for the true average marginal
effect. The only good news is that nonparametrically testing the point null of zero
first-order state dependence is possible with default routines. Unfortunately, this
nonparametric test can have low power. In relation to this, I demonstrate through
an empirical example that the resulting IV/GMM estimates of the average treatment
effect of fertility on female labor force participation are outside the nonparametric
bounds under monotonicity.
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1 Introduction

Angrist and Pischke (2009) make their case for applying simple linear methods to recover

marginal effects of interest without resorting to complicated nonlinear methods. Since

many researchers find their arguments convincing, it is not surprising that these simple

linear methods continue to be applied in situations outside their domain of validity. One

such situation, that has almost risen to "folk-theorem" status, is the use of linear panel

data methods to analyze a panel of binary choices. This situation is really an extension of

the "success" of the linear probability model (henceforth, LPM) in cross-sectional settings

to panel data settings that allow for unobserved heterogeneity, feedback, and dynamics.

Several applications of this panel-based LPM can be found in papers published in top

journals1.

A more suitable approach is to use limited dependent variable models when analyzing

these binary choices. Unfortunately, the inclusion of fixed effects creates an incidental

parameter problem that complicates the estimation of average marginal effects, especially

when the time dimension is small (see the survey by Arellano and Bonhomme (2011)).

Resorting to a random effects or correlated random effects approach may require spec-

ifying the full distribution of the fixed effects and initial conditions – something that

researchers may be unwilling to do because of the lack of specific subject matter knowl-

edge to construct such a distribution. Another suitable approach would be to use the

nonparametric bounds derived by Chernozhukov et al. (2013). These nonparametric

bounds may be calculated in software with some programming but the resulting bounds

may be viewed as being too wide. Linear dynamic panel data methods naturally become

simple and attractive procedures that allow for fixed effects, dynamics, predetermined

regressors, fewer functional form restrictions, and even allow for heteroscedasticity.

I show that usual linear dynamic panel data methods are inappropriate for estimating

average marginal effects even if the goal is just to approximate an average marginal
1Examples include assessing the magnitude of state dependence in female labor force participation

(Hyslop 1999), examining the factors that affect exporting decisions (Bernard and Jensen 2004), de-
termining the effect of income on transitions in and out of democracy (Acemoglu et al. 2009), and
determining how overnight rates affect a bank’s decision to provide loans (Jiménez et al. 2014).
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effect. In particular, I show the large-n limit of the Anderson-Hsiao (1981; 1982) IV

estimator (henceforth AH) is a marginal effect subject to incorrect weighting. Given that

the AH estimator is a special case of GMM, estimators in the spirit of Arellano and Bond

(1991) will be subject to the same problem. I also show that the effect of this incorrect

weighting does not disappear even when T is large. We are unable to use a similar

analysis as Loken, Mogstad, and Wiswall (2012), who compute the weights only from

observables, to study the incorrect weighting function because the incorrect weighting

function depends on unobservables. Furthermore, I give examples to show that there

exist certain parameter configurations and fixed effect distributions (not all of which are

esoteric) for which the large-n limit of the AH estimator is outside the nonparametric

bounds derived by Chernozhukov et al. (2013).

Despite these issues, the usual linear dynamic panel data methods can be used to

nonparametrically test the null hypothesis of zero first-order state dependence or the null

hypothesis of zero effect for a predetermined binary treatment. For the case of state

dependence, the test is nonparametric in the sense that the test does not require the

functional form for the inverse link function and the joint distribution of unobserved

heterogeneity and the initial conditions. For the case of the effect of a predetermined

binary treatment, the test does not require knowledge of the feedback effects of past

choices on current treatment. Unfortunately, it is unclear whether this good news will

have wide applicability because this nonparametric test may have low power.

Much research has been done on whether using the LPM is suitable, especially for

the cross-sectional case. A particularly eye-catching example was provided by Lewbel,

Dong, and Yang (2012). They show, in a toy example, that OLS applied to the LPM

cannot even get the correct sign of the treatment effect even in the situation where

there is just a binary exogenous regressor and a high signal-to-noise ratio. On the other

hand, Wooldridge (2010) argues that "the case for the LPM is even stronger if most the

regressors are discrete and take on only a few values"2.
2Problem 15.1 of his book asks the reader to show that we need not worry about success probabilities

being outside [0, 1] in a saturated model, a result also demonstrated in Section 3.4 of Angrist and Pischke
(2009).
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Some results are available for the panel data case. If we specialize the results in

Wooldridge (2005) and Murtazashvili and Wooldridge (2008) to the LPM, then fixed-

effects (henceforth, FE) estimation applied to the LPM with strictly exogenous regressors

or to the LPM with continuously endogenous regressors can be used to consistently esti-

mate average marginal effects under a specific correlated random coefficients condition.

In contrast, I consider the situation where we have a lagged binary dependent variable

or a predetermined binary treatment.

Hahn’s (2001) discussion of Angrist (2001) has already pointed out the lucky coinci-

dence of factors under which the within estimator is able to estimate an average treatment

effect in a two-period static panel data model. In addition, he emphasizes that the simple

strategies suggested by Angrist (2001) require knowledge of the "structure of treatment

assignment and careful reexpression of the new target parameter". Chernozhukov et al.

(2013) also make the same point and further show that the within estimator converges

to some weighted average of individual difference of means for a specific subset of the

data. They also show that this weighted average is not the average marginal effect of

interest because of incorrect weighting. Their results are obtained under a strict exo-

geneity condition. In contrast, I consider the case where one has predetermined binary

regressors.

The previously cited papers and this paper can also be situated in the studies involving

misspecification in panel data models. Galvao and Kato (2014) and Okui (2015) represent

some attempts to understand exactly what linear dynamic panel data methods recover

when the panel data model is incorrectly specified. Although the message of this paper

is primarily for large-n, fixed-T settings, I use their results to obtain the behavior of the

FE and GMM estimators in large-n, large-T settings.

I organize the rest of the paper as follows. In Section 2, I derive analytically the

consequences of using linear dynamic panel data methods when interest centers on the

average marginal effect of state dependence for the cases of T = 3 and T → ∞. These

analytical results help in developing a list of pros and cons of using linear dynamic

panel data methods to study dynamic discrete choice. Next, I revisit one of the empirical
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applications in Chernozhukov et al. (2013) on female labor force participation and fertility

in Section 3. The last section contains concluding remarks followed by an appendix

containing some details of the derivations in this paper.

2 Pros and cons

2.1 Model

Consider the following specification of a dynamic discrete choice model with fixed effects

and no additional regressors:

Pr
(
yit = 1|xti, αi

)
= H (αi + ρxit) , i = 1, . . . , n, t = 1, . . . , T, (1)

where xti = (xi1, xi2, . . . , xit) is the past and present observation of x, αi is an individual-

specific fixed effect, and H : R → [0, 1] is some unspecified inverse link function. Thus,

the model covers the case of a lagged binary dependent variable or a predetermined bi-

nary regressor. All the analytical results will focus on the case where xit = yi,t−1 since

the main ideas do not change once you allow for a predetermined binary regressor. The

only change in the analytical results will be additional terms involving of an unspeci-

fied model describing the feedback of past values of y on the current value of x, i.e.,

Pr
(
xit = 1|xt−1i , yt−1i , αi

)
.

Assume that (yi0, yi1, yi2, yi3, αi) are i.i.d. draws from their joint distribution. I leave

the joint density of (αi, yi0), denoted by f , unspecified. This data generating process

satisfies Assumptions 1, 3, 5, and 6 of Chernozhukov et al. (2013). We cannot point-

identify the average marginal effect of state dependence, denoted by ∆:

∆ =
∑

y0∈{0,1}

∫
[Pr (yit = 1|yi,t−1 = 1, α, y0)− Pr (yit = 1|yi,t−1 = 0, α, y0)] f (α, y0) dα

(2)

even if we know H but leave the density of (yi0, αi) unspecified. This average marginal

effect is of practical interest because it measures the effect of first-order state dependence
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in the presence of individual-specific unobserved heterogeneity.

Despite this negative result, researchers still insist on using a dynamic LPM on the

grounds that linearity still provides a good approximation even if the true H is nonlinear.

Presumably, the linear model researchers have in mind can be expressed as

yit = ηi + γyi,t−1 + νit, i = 1, . . . , n, t = 1, . . . , T.

Taking first-differences to eliminate ηi, we have

∆yit = γ∆yi,t−1 + ∆νit, i = 1, . . . , n, t = 2, . . . , T.

Because the differenced regressor ∆yi,t−1 is correlated with the differenced error ∆νit, it

seems natural to use IV or GMM estimators to estimate γ and hope that we are able to

recover ∆. The estimators I will study are the following:

1. AH estimator using lagged differences as instruments (for T = 3 and T →∞)

2. AH estimator using lagged levels as instruments (for T = 3 and T →∞)

3. First-difference estimator (for T →∞)

4. FE/Within-groups estimator (for T →∞)

5. Arellano-Bond estimator (for T →∞)

2.2 CON: IV estimators recover an incorrectly-weighted average

marginal effect.

2.2.1 The case where T = 3

Using lagged differences as instruments, the AH estimator can be written as

γ̂AHd =

∑n
i=1 ∆yi1∆yi3∑n
i=1 ∆yi1∆yi2

.
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Because of the binary nature of the sequences {(yi0, yi1, yi2, yi3) : i = 1, . . . , n}, it is cer-

tainly possible for some of the first differences to be equal to zero. Therefore, there

are only certain types of binary sequences that enter into the expression above. If we

enumerate all these 16 possible sequences, we can simplify the estimator as

γ̂AHd =
n0110 + n1001 − n1010 − n0101

n0100 + n1010 + n0101 + n1011

,

where nabcd =
∑n

i=1 1 (yi0 = a, yi1 = b, yi2 = c, yi3 = d) denotes the number of observa-

tions in the data for which we observe the sequence abcd.

It can be shown (as seen in the Appendix) that the large-n limit of ρ̂AHd is

γ̂AHd
p→

∫
H (α) (1−H (α + ρ)) (H (α + ρ)−H (α)) g (α) dα∫

H (α) (1−H (α + ρ)) g (α) dα
(3)

=

∫
wd (α, ρ) (H (α + ρ)−H (α)) dα

=
∑

y0∈{0,1}

∫
wd (α, ρ) [Pr (yt = 1|yt−1 = 1, α, y0)− Pr (yt = 1|yt−1 = 0, α, y0)] dα

where

wd (α, ρ) =
H (α) (1−H (α + ρ)) g (α)∫
H (α) (1−H (α + ρ)) g (α) dα

.

Note that the weighting function wd (α, ρ) depends on the true value of ρ and the marginal

distribution of the fixed effects g (α). The correct weighting function should have been

the joint density of (y0, α) as in (2). Therefore, γ̂AHd is inconsistent for ∆ because of the

incorrect weighting of the individual marginal dynamic effect H (α + ρ) − H (α). It is

not possible to give a general indication of whether we overestimate or underestimate ∆,

because the results depend on the joint distribution of (y0, α). If it happens that ρ = 0

(so that ∆ = 0), then γ̂AHd is consistent for ∆.

The previous analysis can be extended to the AH estimator which uses levels as the
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instrument set. It can be shown that this AH estimator has the following form:

γ̂AHl =

∑n
i=1

∑3
t=2 yi,t−2∆yit∑n

i=1

∑3
t=2 yi,t−2∆yi,t−1

=
n0110 − n0101 + n1110 − n1010 + n1100 − n1011

n1010 + n1000 + n1001 + n1011 + n0100 + n1100 + n0101 + n1101

.

Calculations similar to (3) allow us to derive the large-n limit of ρ̂AHl:

γ̂AHl
p→

∑
y0∈{0,1}

∫
wl (α, ρ, y0) [Pr (yit = 1|yi,t−1 = 1, α, y0)− Pr (yit = 1|yi,t−1 = 0, α, y0)] dα,

where

wl (α, ρ, 0) =
(1−H (α+ ρ))H (α) f (α, 0)∫

[(1−H (α+ ρ)) (1 +H (α+ ρ)) f (α, 1) + (1−H (α+ ρ))H (α) f (α, 0)] dα

,

wl (α, ρ, 1) =
(1−H (α+ ρ)) (1 +H (α+ ρ)) f (α, 1)∫

[(1−H (α+ ρ)) (1 +H (α+ ρ)) f (α, 1) + (1−H (α+ ρ))H (α) f (α, 0)] dα

,

I denote f (α, 0) = Pr (y0 = 0|α) g (α) and f (α, 1) = Pr (y0 = 1|α) g (α). Note that the

weighting function wl (α, ρ, y0) depends on the true value of ρ and the joint distribution

of (y0, α). Once again, we have an incorrect weighting function wl (α, ρ, y0) instead of the

joint distribution of (y0, α). As a result, γ̂AHl is inconsistent for ∆.

2.2.2 The case where T →∞

A natural question to ask is whether the inconsistency results extend to the case where

the number of time periods T is large. An intuitive response would be to say that as

T → ∞, the fixed effects αi can be estimated consistently or that their removal via

differencing should not pose an issue. Therefore, we should be able to estimate average

marginal effects consistently. Unfortunately, this intuition may be mistaken.

To address this issue, I use sequential asymptotics where I let T → ∞ and then

n → ∞ (see Phillips and Moon (1999)). Explicit calculations found in the appendix
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indicate that under this specific asymptotic scheme, we have

γ̂AHd
p→
∫
wd (α, ρ) (H (α + ρ)−H (α)) dα, (4)

γ̂AHl
p→
∫
wl (α, ρ) (H (α + ρ)−H (α)) dα, (5)

γ̂FD
p→ 1

2

[
1−

∫
wl (α, ρ) (H (α + ρ)−H (α)) dα

]
, (6)

where the weighting functions are given by

wd (α, ρ) =
H (α) (1−H (α + ρ)) g (α)∫
H (α) (1−H (α + ρ)) g (α) dα

,

wl (α, ρ) =

H (α) (1−H (α + ρ))

1−H (α + ρ) +H (α)
g (α)∫

H (α) (1−H (α + ρ))

1−H (α + ρ) +H (α)
g (α) dα

.

A noteworthy aspect of the derivation is that wd (α, ρ) is the same regardless of whether

T = 3 or T →∞. Thus, the inconsistency does not disappear and actually stays the same

with respect to size even when T → ∞. The result (6) is very troubling. When ρ = 0

(so that the true average marginal effect is 0), γ̂FD converges to 0.5, grossly overstating

the true ∆.

As for the behavior of the FE estimator in the large-T case, I rely on Proposition

3.1 of Galvao and Kato (2014). In the context I consider, the linear probability model is

misspecified and the true model is the nonlinear model (1). As a result, the conditional

mean E (yit|yi,t−1,αi) is misspecified as additive and linear when in fact it is nonlinear.

Under their assumptions A1 to A3, they show that the FE estimator converges to the

following pseudo-true parameter:

β0 =
E (ỹitỹi,t−1)

E
(
ỹ2i,t−1

) ,
where ỹit = yit − E (yit|αi). Assumption A1 of their paper require that the marginal

distribution of (αi, yit, yi,t−1) is invariant with respect to (i, t). As a result, the initial
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condition is drawn from the stationary distribution conditional on αi. Although I did not

impose this assumption in all previous derivations, this assumption is plausible because

T →∞. For convenience, I now impose this assumption to derive the probability limit of

the FE estimator. In the appendix, I show that this probability limit is the pseudo-true

parameter is given by

β0 =
E [(H (α + ρ)−H (α)) Pr (yt−1 = 1|α) (1− Pr (yt−1 = 1|α))]

E [Pr (yt−1 = 1|α) (1− Pr (yt−1 = 1|α))]
, (7)

where the expectations are calculated with respect to the marginal distribution of α.

Clearly, the FE estimator does not converge to the correct average marginal effect and

the weighting function (which also depends on the stationary distribution of y as seen in

(7)) is given by

wFE (α, ρ) =

H (α) (1−H (α + ρ))

[1−H (α + ρ) +H (α)]2
g (α)∫

H (α) (1−H (α + ρ))

[1−H (α + ρ) +H (α)]2
g (α) dα

.

To derive the large-n, large-T limit of GMM estimators applied to the dynamic LPM,

I use an existing result on heterogeneous dynamics by Okui (2015). He has shown that

the Arellano and Bond (1991) estimator, the GMM estimator based on level moment

conditions proposed by Arellano and Bover (1995), and the FE estimator all converge

to the same probability limit under sequential asymptotics where first n → ∞ followed

by T → ∞. This is different from the sequential asymptotics I have adopted in this

paper and from the joint asymptotics adopted by Galvao and Kato (2014). I show in

the Appendix that, applying his Theorem 5 to the case I consider (which satisfies his

Assumption 2), the probability limit obtained is exactly the same as the one I obtain for

the FE estimator earlier.

Thus, the two AH estimators, the GMM estimators, and the FE estimator are able

to consistently estimate ∆ when ρ = 0 (so that 4 = 0). Unfortunately, for all other

values of ρ, all these estimators still cannot consistently estimate the correct ∆ because

of incorrect weighting in (4), (5), and (7). The appropriate weighting function is now the
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marginal distribution of the fixed effects g (α), because the effect of the initial condition

disappears as T →∞. Just as in the fixed-T case considered earlier, it is still not possible

to determine the direction of inconsistency of all the discussed estimators.

2.2.3 Illustrations of the weighting function

The CON just discussed indicates that we have inconsistent estimation of the average

marginal effect for ρ different from zero. To further persuade researchers not to use IV for

the dynamic LPM in these situations, I adopt the example in Chernozhukov et al. (2013)

to show that, even in the simplest of cases, we cannot ignore the distortion brought about

by the incorrect weighting function.

Consider the data generating process used in Chernozhukov et al. (2013) where H is

the standard normal cdf, yi0 is independent of αi, Pr (yi0 = 1) = 0.5, and T = 3 (later

T → ∞). I use four different distributions for the fixed effects, as described in Table

1. The first is the standard normal distribution, which is a usual choice in Monte Carlo

simulations and in random-effects estimation. The second is a mixture of three normals

that is symmetric but has three modes. Mixtures of normals are prominent in Bayesian

models used in marketing research (e.g., Rossi, Allenby, and McCulloch (2012)) and have

been used as flexible specifications for αi in econometrics (e.g., Burda, Harding, and

Hausman (2015)). The third is a distribution which favors the LPM because the support

of αi is a bounded interval [0, 1]. Finally, the fourth is a mixture of a standard normal

and a normal distribution with mean 2 and variance 0.52. This mixture makes it more

likely for cross-sectional units to have yit = 1 across time. In comparison to the first two

distributions, the last two distributions have nonzero mean.

Table 1: Distribution of fixed effects for computations

1/3N (−1, 1) + 1/3N (0, 0.52) 0.5N (0, 1) +
N (0, 1) +1/3N (1, 1) Beta (2, 2) 0.5N (2, 0.52)

Mean 0 0 0.5 1
Variance 1 1.417 0.05 1.625
Skewness coefficient 0 0 0 -0.543
Kurtosis coefficient 3 3.353 2.143 2.402
Multimodal? Unimodal Trimodal Unimodal Bimodal
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Using the data generating process described earlier, I plot in Figures 1 and 2 the

weighting functions wd (α, ρ) and wl (α, ρ), respectively, when T = 3.3 I also plot in

Figures 3 and 4 the weighting functions wl (α, ρ) and wFE (α, ρ), respectively, when T →

∞. In all these figures, the black solid curve represents the correct weighting function

that should be used. The other colored curves represent the weighting functions for fixed

values of ρ ∈ {−2,−1, 0, 1, 2}. The plots indicate that the distortion brought about

by incorrect weighting is quite severe regardless of the size of T . All the plots share

a common feature except for the Beta-distributed fixed effect – the incorrect weighting

function tends to place higher weight on negative values of α as the value of ρ becomes

larger. This means that cross-sectional units with some unobservable index α below

the median get higher weight when there is positive state dependence. Similarly, cross-

sectional units with unobservable index α above the median get higher weight when there

is negative state dependence. Note that this effect is more pronounced for the case of

positive state dependence. Another noteworthy aspect of the figures is that the incorrect

weighting function can oversmooth the modes of the correct weighting function that are

not located around negative values of the support of the fixed effect distribution, whether

or not T is fixed or T →∞.

2.3 CON: The large-n limit of IV estimators may be found out-

side the identified set.

Chernozhukov et al. (2013) propose nonparametric bounds to estimate the identified set

for the average marginal effect ∆. These nonparametric bounds are relatively easy to

compute since they involve difference of means and counts for specific subsets of the

data. Their method applies for any value of T . I focus on the case where T = 3 and I

perform the calculations based on the DGPs described in Subsection 2.2.3. In Figure 5,

I plot4 the large-n limits of the AH estimators (in blue for γ̂AHd and green for γ̂AHl) and

large-n limits of the nonparametric bounds proposed by Chernozhukov et al. (2013) (in
3I used the notation wl (α, ρ, y0) in the previous subsection. However, the DGP I study is such that

y0⊥α.
4A Mathematica notebook containing the calculations is available upon request.
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red for the lower bound ∆̂l and orange for the upper bound ∆̂u) evaluated at different

values of ρ ∈ [−2, 2]. I also calculate the true ∆ (in black) using the true distribution of

(y0, α).

Even in the benchmark case where αi ∼ N (0, 1), both the large-n limits of the AH

estimators are larger than ∆ when ρ > 0. Further note that for relatively strong negative

state dependence, both these large-n limits are outside the identified set. This result is

practically relevant because negative state dependence has been found in the literature on

scarring effects (see references in Torgovitsky (2015)). We have similar results for the case

where αi ∼ 1/3N (−1, 1) + 1/3N (0, 0.52) + 1/3N (1, 1). It appears that the large-n limit of

the AH estimator using levels as instruments is doing quite well, relative to the standard

normal case. For αi ∼ Beta (2, 2), the large-n limits of the AH estimators are practically

the same as ∆ and both can be found in the identified set. The key seems to be the

bounded support for the fixed effect, which is [0, 1]. For αi ∼ 0.5N (0, 1) + 0.5N (2, 0.52),

both the large-n limits of the AH estimators nearly coincide and are much larger than ∆

even for less persistent state dependence.

Finally, Chernozhukov et al. (2013) show in their Theorem 4 that the identified set

for ∆ shrinks to a singleton as T → ∞. Thus, it becomes more likely that the large-T

limits in (4), (5), and (6) would be outside the identified set.

2.4 PRO/CON: IV estimators may be used to nonparametrically

test the null of no first-order state dependence.

The good news is that the IV estimators are able to estimate a zero average marginal

effect, if it were the truth. This observation may allow us to construct a nonparametric

test of the hypothesis that ∆ = 0 or, equivalently, ρ = 0. In particular, one does not

need to impose any assumptions about the unknown joint distribution of (y0, α) and

the inverse link function H to implement the test. In the case of a predetermined binary

regressor, one also does not need to impose any assumptions about the model representing

the feedback effect of past values of y on the current value of the predetermined binary

regressor. Furthermore, this nonparametric test may be applied directly when T is fixed.
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More importantly, it does not require us to find which pairs of binary sequences will have

relative odds equal to 1 under the null5. To implement this Wald test, default routines

in Stata or any other statistical software can easily be used without any modifications.

Unfortunately, this good news will be dampened by three considerations. First, the

nonparametric test cannot be applied directly when T is large. Hahn and Kuersteiner

(2002) and Alvarez and Arellano (2003) have already shown that the asymptotic distri-

bution of the FE and GMM estimators are not centered at zero under a large-n, large-T

asymptotic scheme. It is unclear how one should construct the bias correction for the

GMM estimator when there is model misspecification. Galvao and Kato (2014) have

shown how to conduct inference for the pseudo-true parameter β0 in (7). As discussed

previously, this pseudo-true parameter has economic content when ρ = 0 because it rep-

resents a zero average marginal effect of first-order state dependence. The procedure that

performed well in their Monte Carlo experiments is that of bias-correcting the FE esti-

mator with the half-panel jackknife and applying cross-sectional bootstrap to a pivotal

statistic, which in our context is a simple t-statistic. Unfortunately, the rate of conver-

gence is
√
n rather than

√
nT even if the procedure is justified under a large-n, large-T

asymptotic scheme. The rate of convergence depends on whether E (ỹi,t−1εit|αi) is equal

to zero or not. In our context, we have

E (ỹi,t−1εit|αi) = [H (α + ρ)− β0] Pr (yt−1 = 1|α) (1− Pr (yt−1 = 1|α))

= [H (α + ρ)− β0]
[

H (α)

1−H (α + ρ) +H (α)

] [
1−H (α + ρ)

1−H (α + ρ) +H (α)

]

which is not equal to zero even if β0 = 0 or, equivalently, ρ = 0.

Second, the nonparametric test might not have good power properties. It can be

shown that for the large-n, fixed-T case,

√
n (γ̂j −MEj (ρ))

d→ N (0, V (γ̂j, ρ)) , j ∈ {AHd,AHl} ,
5See Chay and Hyslop (2014) for an application of this idea but in the context of a descriptive analysis

rather than a formal test.
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whereMEj (ρ) is the large-n limit of the corresponding estimator γ̂j. Consider the test of

the null that the average marginal effect of first-order state dependence is equal to zero,

i.e. ∆ = 0. We reject the null at the 100α% level whenever
∣∣∣√nγ̂j/√V (γ̂j, 0)

∣∣∣ > zα,

where zα satisfies Φ (zα) = 1 − α. As a result, the power function derived for local

alternatives that satisfy
√
nρn = h can be written as

Pr
ρn 6=0

(∣∣∣∣∣
√
nγ̂j√

V (γ̂j, 0)

∣∣∣∣∣ > zα

)
= 1− Φ

(
zα
√
V (γ̂j, 0)−

√
n (MEj (ρn)−MEj (0))√
V (γ̂j, ρn)

)
+ o (1)

= 1− Φ

(
zα
√
V (γ̂j, 0)−

√
nρnME ′j (ρn) + o (

√
nρn)√

V (γ̂j, ρn)

)
+ o (1)

n→∞→ 1− Φ

(
zα − h ·

ME ′j (0)√
V (γ̂j, 0)

)

Ultimately, comparing different tests (based on different estimators of the zero average

marginal effect) depends on the ratio ME ′j (0) /
√
V (γ̂j, 0). Note that the numerator of

this ratio depends on the value of the weighting functions evaluated at ρ = 0. Expressions

for this ratio for the two AH estimators are as follows:

ME ′AHd (0)√
V (γ̂AHd, 0)

=

∫
H ′ (α)H (α) (1−H (α)) g (α) dα

2

∫
H (α) (1−H (α))2 g (α) dα

ME ′AHl (0)√
V (γ̂AHl, 0)

=

∫
H ′ (α)H (α) (1−H (α)) g (α) dα +

∫
H ′ (α)H (α) (1−H (α)) f (α, 1) dα

2

∫
H (α)2 (1−H (α)) g (α) dα + 2

∫
H (α) (1−H (α))2 f (α, 1) dα

Despite having these closed forms, it is not possible to compare the asymptotic relative

efficiency of the tests based on the two AH estimators. In the large-n, large-T case and

provided that some bias-correction is made, it is worth noting that the numerator of the

ratio ME ′j (0) /
√
V (γ̂j, 0) is equal across all j ∈ {AHd,AHl, FE,GMM} because

ME ′j (0) =

∫
H ′ (α)wj (α, 0) dα

and

wd (α, 0) = wl (α, 0) = wFE (α, 0) = wGMM (α, 0) .
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The latter can be seen readily from the previous subsections. Thus, the asymptotic

relative efficiency of the various tests will ultimately depend on which of the estimators

have the lowest asymptotic variance. I leave this issue to further research.

I conduct a small Monte Carlo study comparing the power properties of these two AH

estimators in the large-n, fixed-T case. Figures 6 and 7 contain plots of the estimated

power curves based on 10000 replications of each of the DGPs in Subsection 2.2.3. The

estimated power curves are computed over a equally spaced grid for ρ ∈ [−1, 1] and for

n ∈ {100, 500, 2500}. Both AH estimators have good size control. From a practical point

of view, researchers should use γ̂AHl because γ̂AHd may not exist for very small values of

n. Both figures feature low empirical rejection rates (below 50%) when ρ ∈ [−0.25, 0) ∪

(0, 0.25]. A very noteworthy aspect of the figures is the situation where αi ∼ Beta (2, 2).

In Figure 5, we find that the true average marginal effect was approximated quite well,

yet the estimated power curves indicate poor power properties compared to the other

distributions for unobserved heterogeneity.

Finally, the nonparametric test becomes more complicated to construct once you in-

clude other regressors beyond the lagged binary dependent variable or the predetermined

binary regressor. The analytical properties of the resulting estimators once additional

regressors are accounted for are beyond the scope of this paper.

3 Empirical illustration

Using one of the empirical applications in Chernozhukov et al. (2013) on female labor

force participation and fertility, I now illustrate why IV estimation of the dynamic LPM

with fixed effects is a situation where the cons can outweigh the pros. I use Stata 12 for

this illustration using the most convenient and popular procedures as possible.

They estimate the following model using complete longitudinal data on 1587 married

women selected from the National Longitudinal Survey of Youth 1979 and observed for

three years – 1990, 1992, and 1994:

LFPit = 1 (β · kidsit + αi ≥ εit) .
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The parameter of interest is the average marginal effect of fertility on female labor force

participation. The dependent variable is a labor force participation indicator, the regres-

sor is a fertility indicator that takes the value 1 if the woman has a child less than 3 years

old, and αi is an individual-specific fixed effect.

Table 10: Female LFP and fertility
Procedure Estimate of ∆ 95% CI

Static NP bounds [−0.404,−0.043]
DUn = [−0.425,−0.022]a

Un = [−0.429,−0.017]a

Static random effects probit −0.106 [−0.130,−0.082]b

FE −0.084
[−0.110,−0.058]b

[−0.112,−0.056]c

First-difference OLS −0.068
[−0.094,−0.042]b

[−0.097,−0.038]c

n = 1587, T = 3, fertility is treated as strictly exogenous
a Constructed from 1 million draws using the algorithm in Beresteanu and Molinari (2008).
b Obtained using the usual standard errors.
c Obtained using clustered standard errors.

Chernozhukov et al. (2013) computed estimates of the nonparametric bounds for

the average marginal effect under the assumption that the fertility indicator is strictly

exogenous (called static nonparametric bounds) and that the average marginal effect is

decreasing6 (called monotonicity) in the fertility indicator. I recompute7 and was able to

reproduce their estimated bounds. In addition, I compute FE, first-differenced OLS, and

static random effects probit (using xtprobit) estimates of the average marginal effect

under the assumption that the fertility indicator is strictly exogenous. These estimates

can be found in Table 10. Notice that both the FE and first-differenced estimates can be

found inside the static bounds. The estimated average marginal effect from the random

effects probit is inside the static bounds, despite the very incredible assumption that

the fixed effects are independent of the past, present, and current values of the fertility

indicator.

To illustrate the results in this paper, I now treat the fertility indicator as prede-

termined and compute estimates of the dynamic nonparametric bounds under this as-
6Details as to how to construct the bounds under monotonicity can be found in the Supplemental

Material to Chernozhukov et al. (2013).
7A Stata do-file for this entire section is available for replication upon request.
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sumption. I also calculate the AH (using ivregress) and Arellano-Bond (using David

Roodman’s (2009) xtabond2 or the built-in Stata command xtdpd) estimates. These

estimates can be found in Table 11. Notice that the AH and Arellano-Bond estimates,

which actually assume predeterminedness, are outside the dynamic bounds. The esti-

mates are also substantially smaller (roughly 11% smaller in absolute value) than the

upper bound of the set estimate.

Table 11: Female LFP and fertility
Procedure Estimate of ∆ 95% CI

Dynamic NP bounds [−0.386,−0.187]
DUn = [−0.409,−0.164]a

Un = [−0.429,−0.144]a

AH (lagged differences) −0.007
[−0.131, 0.117]b

[−0.140, 0.126]c

AH (lagged levels) −0.022
[−0.071, 0.028]b

[−0.071, 0.027]c

Arellano-Bond (one-step) −0.023 [−0.063, 0.017]b

Arellano-Bond (two-step) −0.022
[−0.070, 0.026]b

[−0.070, 0.026]d

n = 1587, T = 3, fertility is treated as predetermined
a Constructed from 1 million draws using the algorithm in Beresteanu and Molinari (2008).
b Obtained using the usual standard errors.
c Obtained using clustered standard errors.
d Calculated with the Windmeijer correction.

I also construct 95% asymptotic confidence intervals for each procedure. The tables

provide information as to what standard errors were used. For the nonparametric bounds,

I use the algorithm by Beresteanu and Molinari (2008) – which is one of the suggested

procedures in Chernozhukov et al. (2013). I report two confidence intervals denoted as

DUn and Un by Beresteanu and Molinari (2008). Note that the null hypothesis β = 0

is not rejected if we use linear dynamic panel data methods for inference, yet β = 0 is

rejected when dynamic nonparametric bounds were used. Thus, the findings in Table

11 further reinforce the potential lack of power of the nonparametric test of the null

hypothesis β = 0.

Finally, I calculated some diagnostics typically reported by researchers applying linear

dynamic panel data methods such as a test of overidentifying restrictions and tests of

weak identification. I do not report them explicitly here because their usage may be
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questionable but the calculations indicate that we do not reject the model and that

the weak identification-robust confidence intervals are very close to the reported interval

[−0.070, 0.026]. Thus, all these indicate "passing" marks for the dynamic LPM with fixed

effects despite the non-rejection of the possibly false null β = 0.

4 Concluding remarks

I show that using IV/GMM methods to estimate the dynamic LPM with fixed effects

is inappropriate as n → ∞ (whether T is fixed or T diverges with n). The analytical

results indicate that incorrect weighting of the individual treatment effect is the source

of the problem. This incorrect weighting function has a form that depends on both the

value of the fixed effect, the initial condition, their joint distribution, and the true value

of the autoregressive parameter. The examples indicate that there is a tendency for

this incorrect weighting function to place higher weight on fixed effect values below the

median of the distribution of the fixed effects, whenever the true autoregressive parameter

is positive. From these examples, believing that the IV estimators will be practically

close to the true average marginal effect requires us to hold strong prior beliefs about the

support of the distribution for unobserved heterogeneity. These prior beliefs are exactly

what researchers wanted to avoid by using a fixed effects method.

In addition, I construct specific examples to show that the estimators may be outside

the identified set even in the limit. Therefore, it is more appropriate to use the non-

parametric bounds proposed by Chernozhukov et al. (2013), especially if one is unwilling

to specify the form for the inverse link function and the joint distribution of the initial

conditions and the fixed effects.

The large-n, large-T results I obtain are based on sequential asymptotics. Given the

results in Section 2 and the Appendix, it is very likely that we should obtain similar

inconsistency results based on joint asymptotics. The results in the paper point out that

the direction of the asymptotic bias of the estimator for the average marginal effect cannot

be obtained. This is in stark contrast with the direction of the asymptotic bias derived
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by Nickell (1981). The procedure used by Fernandez-Val (2009) is bias-correcting the FE

estimator using an estimate of the Nickell bias. Although the Monte Carlo experiments

of Fernandez-Val (2009) indicate good finite sample performance of this procedure, future

work should study exactly what these corrections are doing.

For large-n, large-T settings, testing nonparametrically the point null of zero first-

order state dependence or zero effect for the predetermined binary treatment would have

to use the inference procedure by Galvao and Kato (2014). For large-n, fixed-T settings,

the recommended procedure for now is to use the AH estimator using lagged levels as

instruments. For this nonparametric test to have good power properties, a large value of

n would be required as seen in the Monte Carlo simulations.

It would also be interesting to derive similar analytical results for correlated random

effects models so that the results in Wooldridge (2005) and Murtazashvili and Wooldridge

(2008) can be extended to the dynamic case. In the empirical application, I find that the

average marginal effect from the usual random effects probit under strict exogeneity can

be found within the static nonparametric bounds. Respecting the inherent nonlinearity

of a discrete choice model (even under potential misspecification of both the inverse link

function and the distribution of the fixed effects) may be responsible for this finding.

Future work on this will be of practical interest.

Finally, an extension to the case where there are other strictly exogenous or predeter-

mined regressors would be most welcome given that the nonparametric test is restricted

only to a model without these other regressors. A possible direction would be to calculate

the estimators for subsets of the data for which all the other regressors take on specific

values. A kernel-based procedure may be used for regressors that are continuous. If this

direction is possible, then the nonparametric test will have wider applicability.
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A Some calculations for (3)

We calculate E [1 (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0)] in detail since the other expressions

follow similarly. This expression is equal to

Pr (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0)

=

∫
Pr (yi0 = 0, yi1 = 1, yi2 = 1, yi3 = 0|α) g (α) dα

=

∫
Pr (yi3 = 0|yi0 = 0, yi1 = 1, yi2 = 1, α) Pr (yi2 = 1|yi0 = 0, yi1 = 1, α)×

Pr (yi1 = 1|yi0 = 0, α) Pr (yi0 = 0|α) g (α) dα

=

∫
Pr (yi3 = 0|yi2 = 1, α) Pr (yi2 = 1|yi1 = 1, α) Pr (yi1 = 1|yi0 = 0, α) f (α, 0) dα

=

∫
(1−H (α + ρ))H (α + ρ)H (α) f (α, 0) dα, (8)

where f is the joint density of (α, y0). Similarly, we have the following:

E [1 (yi0 = 1, yi1 = 0, yi2 = 0, yi3 = 1)] =

∫
H (α) (1−H (α)) (1−H (α+ ρ)) f (α, 1) dα

E [1 (yi0 = 1, yi1 = 0, yi2 = 1, yi3 = 0)] =

∫
(1−H (α+ ρ))H (α) (1−H (α+ ρ)) f (α, 1) dα

E [1 (yi0 = 0, yi1 = 1, yi2 = 0, yi3 = 1)] =

∫
H (α) (1−H (α+ ρ))H (α) f (α, 0) dα

E [1 (yi0 = 0, yi1 = 1, yi2 = 0, yi3 = 0)] =

∫
(1−H (α)) (1−H (α+ ρ))H (α) f (α, 0) dα

E [1 (yi0 = 1, yi1 = 0, yi2 = 1, yi3 = 1)] =

∫
H (α+ ρ)H (α) (1−H (α+ ρ)) f (α, 1) dα

Assembling these expressions together in the expression for the large-sample limit of ρ̂AHd

gives (3).

B Some calculations for the large-T case

Recall that these estimators are given by the following expressions:

γ̂AHd =

∑n
i=1

∑T
t=3 ∆yi,t−2∆yit∑n

i=1

∑T
t=3 ∆yi,t−2∆yi,t−1

, γ̂AHl =

∑n
i=1

∑T
t=2 yi,t−2∆yit∑n

i=1

∑T
t=2 yi,t−2∆yi,t−1

, γ̂FD =

∑n
i=1

∑T
t=2 ∆yit∆yi,t−1∑n

i=1

∑T
t=2 (∆yi,t−1)

2
.
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Note that ∆yi,t−2∆yit = yi,t−2yit − yi,t−3yit − yi,t−2yi,t−1 + yi,t−3yi,t−1. Observe that the

binary nature of y allows us to write

1

T

T∑
t=3

yi,t−2yit
p→ lim

T→∞

1

T

T∑
t=3

Pr (yit = 1, yi,t−2 = 1) .

By the law of total probability, the definition of conditional probability, and calculations

similar to (8), we are able to express Pr (yit = 1, yi,t−2 = 1) as

Pr (yit = 1, yi,t−2 = 1)

= Pr (yit = 1, yi,t−1 = 0, yi,t−2 = 1) + Pr (yit = 1, yi,t−1 = 1, yi,t−2 = 1)

=

∫
H (α) (1−H (α+ ρ)) Pr (yi,t−2 = 1|α) g (α) dα+

∫
H (α+ ρ)2 Pr (yi,t−2 = 1|α) g (α) dα.

As a result, we have

1

T

T∑
t=3

yi,t−2yit
p→
∫ [

H (α+ ρ)2 +H (α) (1−H (α+ ρ))
] [

lim
T→∞

1

T

T∑
t=3

Pr (yi,t−2 = 1|α)

]
g (α) dα.

Finally observe that Pr (yi,t−2 = 1|α) obeys a first-order nonhomogeneous difference equa-

tion. In particular, note that

Pr (yi1 = 1|α) = Pr (yi1 = 1|yi0 = 1, α) Pr (yi0 = 1|α) + Pr (yi1 = 1|yi0 = 0, α) Pr (yi0 = 0|α)

= [H (α + ρ)−H (α)] Pr (yi0 = 1|α) +H (α)

Pr (yi2 = 1|α) = Pr (yi2 = 1|yi1 = 1, α) Pr (yi1 = 1|α) + Pr (yi2 = 1|yi1 = 0, α) Pr (yi1 = 0|α)

= [H (α + ρ)−H (α)] Pr (yi1 = 1|α) +H (α)

...

Pr (yit = 1|α) = [H (α + ρ)−H (α)] Pr (yi,t−1 = 1|α) +H (α)

The solution to the above difference equation can be written as

Pr (yit = 1|α) = [H (α + ρ)−H (α)]t Pr (yi0 = 1|α) +
t−1∑
s=0

[H (α + ρ)−H (α)]sH (α) .
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Note that |H (α + ρ)−H (α)| < 1. As a result, the effect of the initial condition disap-

pears as T →∞:

lim
T→∞

1

T

T∑
t=3

Pr (yi,t−2 = 1|α) =
H (α)

1−H (α + ρ) +H (α)
.

Thus, we have

1

T

T∑
t=3

yi,t−2yit
p→
∫ [

H (α+ ρ)2 +H (α) (1−H (α+ ρ))
] [ H (α)

1−H (α+ ρ) +H (α)

]
g (α) dα.

Following similar calculations, we can derive the large-T limits of the other components.

In particular,

1

T

T∑
t=3

yi,t−2yi,t−1
p→ lim

T→∞

1

T

T∑
t=3

Pr (yi,t−1 = 1, yi,t−2 = 1)

=

∫
H (α+ ρ)

[
H (α)

1−H (α+ ρ) +H (α)

]
g (α) dα.

1

T

T∑
t=3

yi,t−3yit
p→ lim

T→∞

1

T

T∑
t=3

Pr (yit = 1, yi,t−3 = 1)

=

∫
H (α+ ρ)3

[
H (α)

1−H (α+ ρ) +H (α)

]
g (α) dα

+

∫
2H (α+ ρ)H (α) (1−H (α+ ρ))

[
H (α)

1−H (α+ ρ) +H (α)

]
g (α) dα

+

∫
H (α) (1−H (α)) (1−H (α+ ρ))

[
H (α)

1−H (α+ ρ) +H (α)

]
g (α) dα.

Observe that the last term 1
T

∑T
t=3 yi,t−3yi,t−1 has the same probability limit as 1

T

∑T
t=3 yi,t−2yi,t

as T →∞. Assembling all the results together, we have as T →∞,

1

T

T∑
t=3

∆yi,t−2∆yit
p→ −

∫
(1−H (α + ρ))H (α) (H (α + ρ)−H (α)) g (α) dα.
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The other large-T results now follow similar computations. In particular, we have as

T →∞,8

1

T

T∑
t=3

∆yi,t−2∆yi,t−1
p→ −

∫
(1−H (α + ρ))H (α) g (α) dα,

1

T

T∑
t=2

yi,t−2∆yit
p→ −

∫
(1−H (α + ρ))H (α)

1−H (α + ρ) +H (α)
(H (α + ρ)−H (α)) g (α) dα,

1

T

T∑
t=2

yi,t−2∆yi,t−1
p→ −

∫
(1−H (α + ρ))H (α)

1−H (α + ρ) +H (α)
g (α) dα,

1

T

T∑
t=2

∆yit∆yi,t−1
p→ −

∫
(1−H (α + ρ))H (α) g (α) dα,

1

T

T∑
t=2

(∆yi,t−1)
2 p→ −2

∫
(1−H (α + ρ))H (α)

1−H (α + ρ) +H (α)
g (α) dα.

Notice that the limiting quantities above do not depend on i. Therefore, as n → ∞, we

will obtain (4), (5), and (6) after some algebra.

C Derivation of the large-n, large-T limit of the fixed

effects estimator

Galvao and Kato (2014) impose assumptions A1 to A3 to derive the large-n, large-T

limit of the fixed effects estimator. Assumption A1 is about independence across cross-

sectional units and a mild form of time series dependence conditional on αi. For my case,

I needed to impose the assumption that the initial condition is drawn from its stationary

distribution conditional on αi, unlike the derivations for the AH estimators.

Let ỹit = yit − E (yit = 1|αi) = yit − Pr (yit = 1|αi) for t = 1, . . . , T . Assumption

A2 is about the existence and boundedness of the moments of ỹit. These moments

are guaranteed to exist and be bounded because ỹit has a Bernoulli distribution with

probability Pr (yit = 1|αi) ∈ (0, 1). They show that the fixed effects estimator converges
8Some of the calculations can be found in the Appendix. Note that even with fixed n, the inconsistency

is still present.
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to the following pseudo-true parameter:

β0 =
E (ỹitỹi,t−1)

E
(
ỹ2i,t−1

) .
I now calculate the denominator explicitly. First, note that

ỹ2i,t−1 = y2i,t−1 − 2yi,t−1 Pr (yi,t−1 = 1|αi) + (Pr (yi,t−1 = 1|αi))2

= yi,t−1 − 2yi,t−1 Pr (yi,t−1 = 1|αi) + (Pr (yi,t−1 = 1|αi))2 .

Taking expectations, we have

E
(
ỹ2i,t−1

)
= E

[
yi,t−1 − 2yi,t−1 Pr (yi,t−1 = 1|αi) + (Pr (yi,t−1 = 1|αi))2

]
= E

[
E (yi,t−1|αi)− 2E (yi,t−1|αi) Pr (yi,t−1 = 1|αi) + (Pr (yi,t−1 = 1|αi))2

]
= E

[
Pr (yi,t−1 = 1|αi)− (Pr (yi,t−1 = 1|αi))2

]
= E [Pr (yi,t−1 = 1|αi) (1− Pr (yi,t−1 = 1|αi))] .

Note that E
(
ỹ2i,t−1

)
> 0 and satisfies assumption A3 of Galvao and Kato (2014). As for

the numerator, note that

ỹitỹi,t−1 = yityi,t−1 − yit Pr (yi,t−1 = 1|αi)− yi,t−1 Pr (yit = 1|αi)

+ Pr (yit = 1|αi) Pr (yi,t−1 = 1|αi) . (9)

Take the first two terms of the right hand side of (9). Applying law of iterated expectations

and E (yit|yi,t−1, αi) = Pr (yit = 1|yi,t−1, αi) gives

E ((yi,t−1 − Pr (yi,t−1 = 1|αi)) yit)

= E [E (E ((yi,t−1 − Pr (yi,t−1 = 1|αi)) yit|yi,t−1, αi) |αi)]

= E [E ((yi,t−1 − Pr (yi,t−1 = 1|αi))E (yit|yi,t−1, αi) |αi)]

= E [E ((yi,t−1 − Pr (yi,t−1 = 1|αi))H (αi + ρyi,t−1) |αi)]

= E [(1− Pr (yi,t−1 = 1|αi))H (αi + ρ) Pr (yi,t−1 = 1|αi)]
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−E [Pr (yi,t−1 = 1|αi)H (αi) (1− Pr (yi,t−1 = 1|αi))] .

The last two terms of the right hand side of (9) is equal to zero. As a result, we obtain

E (ỹitỹi,t−1) = E [(H (αi + ρ)−H (αi)) Pr (yi,t−1 = 1|αi) (1− Pr (yi,t−1 = 1|αi))] .

Combining all these findings give us the final form for the pseudo-true parameter:

β0 =
E [(H (αi + ρ)−H (αi)) Pr (yi,t−1 = 1|αi) (1− Pr (yi,t−1 = 1|αi))]

E [Pr (yi,t−1 = 1|αi) (1− Pr (yi,t−1 = 1|αi))]
.

D Derivation of the large-n, large-T limit of the GMM

estimator

The setup in Okui (2015) is as follows: Consider the situation where a scalar yit has het-

erogenous means ηi = E (yit|αi) and autocovariances γk,i = E [(yit − ηi) (yi,t−k − ηi) |αi].

This fits the case of the dynamic LPM. In particular, if we use the results in this appendix,

we have

ηi =
H (αi)

1−H (αi + ρ) +H (αi)
,

γ0,i =
H (αi) (1−H (αi + ρ))

[1−H (αi + ρ) +H (αi)]
2 ,

γ1,i =
H (αi) (1−H (αi + ρ)) (H (αi + ρ)−H (αi))

[1−H (αi + ρ) +H (αi)]
2 ,

γ2,i =
H (αi) (1−H (αi + ρ)) (H (αi + ρ)−H (αi))

2

[1−H (αi + ρ) +H (αi)]
2 .

Okui (2015) shows that under his Assumption 2 that the Arellano and Bond (1991)

estimator, the GMM estimator based on level moment conditions proposed by Arellano

and Bover (1995), and the FE estimator all converge to the same probability limit under

sequential asymptotics where first n → ∞ followed by T → ∞. This same probability

limit is given by E (γ1,i) /E (γ0,i). The resulting limit is exactly the same limit I derived

for the FE estimator using the result from Galvao and Kato (2014) but under joint
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asymptotics.

Interestingly, the probability limit under sequential asymptotics where first n → ∞

followed by T → ∞ for the AH estimator using levels as the instrument set is also the

same under sequential asymptotics where first T →∞ followed by n→∞. Okui (2015)

shows that under his Assumption 2 that the probability limit is given by

E (γ1,i − γ2,i)
E (γ0,i − γ1,i)

=

∫
H (α) (1−H (α + ρ))

1−H (α + ρ) +H (α)
(H (α + ρ)−H (α)) g (α) dα∫

H (α) (1−H (α + ρ))

1−H (α + ρ) +H (α)
g (α) dα

=

∫
wl (α, ρ) (H (α + ρ)−H (α)) dα,

which is the same limit I obtain in (5).
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