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July 2, 2015

The overarching assumption [ will assume that we have random sampling over i. Some-
times I might consider random sampling as well over t. Take note that i and t are just indices

for the two dimensions by which the data was generated or gathered.

Omitted Variable Bias Assume that the data are generated by the following model:
Yi =PBx;+nz +g,

where ¢, is an error term, x; and z; are scalar zero-mean regressors, and 3 and ) are parameters.
If, for some reason, we compute the OLS estimator from the regression of y; on Xx;, then we
have the following:
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Think about the conditions under which a consistent estimator for 3 can be obtained. Can you

B = =B+

also give some reasons why we can only perform an OLS regression of y; on x;? Suppose I
tell you that (a) you get to observe the same i for two periods and (b) z; does not change over

time. How does this small bit of information help in consistently estimating 3?

Panel Data Blues, Part 1 Are there any other issues we may have neglected? For instance,
what are the properties of the new error term as a result of the new bit of information? How
will it affect the estimator for f?

Deriving the LSDV estimator Consider the panel data linear regression model:
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wherei =1,...,nand t = 1,...,T. The parameters to be estimated are (a,,...,a,,3) but

is of interest. It would be useful to use matrix algebra here. Let
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As a result we can stack (1) across time series observations to get

Yi=tra; + X +eg. (2)
Further let
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We can stack this equation across cross sectional observations to get
y=Da+Xf+e, (3)

where D = I, ® t;. Since the parameter of interest is 3, we have to somehow “get rid” of
the other regressors in D. We can use ideas from the projection interpretation of least squares.
Note that least squares can be thought of as trying to construct an orthogonal decomposition of
regressand into a component predicted from the regressors and a residual component. Suppose
we wish to construct a linear predictor of y using regressors Z; and Z,. We can estimate
regression coefficients ¥, and ¥, using least squares and we have y = y,Z; +73Z, +e. Here e

is not an error term but a residual. Let
P, =2,(2,2,)" Z,, M, =1 —P,.

The matrix M, satisfies M,M, = M,, M,P, =0, M,Z, = 0, and M,e = e. As a result, we have
M,y = y1M,Z; +e. We now have a closed form for the OLS estimator for ¥; which is given by
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Applying (4) to get the OLS estimator for 3 alone, we have



B =(X'MpX) " X'Mpy, (5)

where M, = I, ® M, . Try to explore what M;, does to a vector or a matrix. (5) can be rewritten
as
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Think again about the conditions required for consistency of f3.

Panel Data Blues, Part 2 Something always overlooked when conducting panel data analysis
is the possibility of low longitudinal variation. This means that although you have additional
data on the time-varying regressors, there may not be much variation across time.

Is there an alternative transformation that removes the fixed effects? From the previous
discussion, we have M,D = 0 or M, ty = 0. You know what M}, looks like. What does it do
to the error vector? Can you thinnk of an alternative matrix that could eliminate the fixed
effects? Or what properties should this alternative matrix possess? What are the consequences
of selecting these alternatives in terms of their effects on the error vector? If you try working
this out, you will be able to recover what Arellano and Bover (1995, JoE) try to show.

Yet another way to derive the LSDV estimator The projection approach earlier is restricted
to linear models. To link our simple example to more complicated ones, it helps to consider
what we call profiled (or concentrated) objective functions. Consider once again the model in

(1). The least squares objective function is given by
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Because we envision the possibility of having a large value for n, it is possible to solve a simpler
problem if we could find a way to “get rid” of the a;’s. We can optimize step-by-step. The first
order conditions for the problem (6) are given by

Z(J’it‘ai_x{t ) = 0, (7)
ZZ(}’it—ai—Xft )xit = 0. (8)

Note that we can solve for a; in terms of 3 in (7), i.e.
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It can be shown that (9) is a solution to the following minimization problem with f fixed:
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Furthermore, once we substitute (9) into (8), we can solve for . This solution can be obtained

from the following optimization problem:
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We usually call (10) a profiled (or concentrated) objective function. Try to solve for 8 and

show that it coincides with the LSDV estimator.

Nonlinear models Is it a good idea to extend this insight from linear models to the nonlinear
case? Consider the following logistic regression model where y,,,...,y;; are independently

distributed according to

exp(ai+x{t/3)
1+exp (ai +x{t[3’)’

Yie ~Bernoulli(p;,), p; =

wherei=1,...,nand t = 1,..., T. What happens if one uses maximum likelihood to estimate

p? Explore this when T = 2. Assume that x;, is fixed in repeated sampling.

Failure of strict exogeneity Return to the original panel data regression model in (1). Let
Xy = ¥i 1. Will the LSDV estimator still be consistent?

Pooled OLS How will the identification conditions change when a; = a?

A unified way of looking at the previous results The previous results can be thought of
as manifestations of the so-called incidental parameter problem. Usually, the parameter of
interest 3 is called the structural parameter while the nuisance parameters a,..., a, are called
incidental parameters. Notice that 8 appears in the probability law of every observation while
a; appears only in the probability law of unit i and nowhere else. As a result, we will be unable
to estimate a; consistently when T is finite. The inability to consistently estimate a; affects the

consistency of 3 in general.



We can formalize this idea by looking at it from a likelihood perspective. Let f (y;,; 6, @;) be
the density function of y;,. Assume that y;, are independent across i and t. The log-likelihood

is given by
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Profiling out the incidental parameters, we obtain the fixed effects estimator 8 which solves
the first order conditions

Zz—logf(ym@ a;(6)) =0.

But note that
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Regardless of the asymptotic scheme, the first term has the following stochastic behavior:
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With T fixed and n — oo, the second term does not disappear. This is the incidental parameter
problem. Question: Will allowing T — oo along with n — oo be enough? What if we insist
on fixed T?

One way to resolve the incidental parameter problem in the dynamic panel data model
Recall that we have

Yie =i+ PYir1t Eips (11)

where Cov ( Yit-1> Sit) = 0 (Any sufficient condition for this?). If we take first differences, we
have
Ay =pAyieq+Dey.

For one thing, note that Cov (Ayi,t_l, Asit) # 0. What do you notice about Cov (yi,t_z, Aeit)?
Given this information, what can we do in this situation? Is there any other alternative? Con-
gratulations! You were able to recover the arguments by Anderson and Hsiao (1980 JASA;

1982 JOE). Can we generalize this idea to what some call general predetermined regressors,



i.e. E(x;¢;,) =0 fors < t? What if we only have contemporaneous exogeneity?

One way to resolve the incidental parameter problem in the static logit model It is
possible to use a portion of the data to form the log-likelihood. In particular, try deriving
Pr(yiy = 1|x1, Xj2, Yi1 + Yiz = 1) and Pr(y;; = 1|1, X2, Yi1 + Yiz = 1). Write out the resulting
likelihood. Will the maximizer of the resulting likelihood be consistent? Will the argument

work for the static probit model? Try extending this to the AR(1) logit model.

What to read Textbook-level treatments are available. Try Hsiao’s Analysis of Panel Data,
Wooldridge’s Econometric Analysis of Cross-Section and Panel Data, or Arellano’s Panel Data
Econometrics. Surveys on the state of the literature are also available. Try Chamberlain (1984,
HoE Vol 2) and Arellano and Honoré (2001, HoE Vol 5). If you want books for specialists but
have wide coverage, try The Econometrics of Panel Data: Fundaments and Recent Develop-
ments in Theory and Practice by Matyas and Sevestre (2008) or the more recent 2015 Oxford
Handbook of Panel Data (in stores now).

If you want to know more about the history of the incidental parameter problem, check
Neyman and Scott (1948, Ecta) and a 50-year retrospective by Lancaster (2000, JoE). They
are both highly recommended.

If you want a history of panel data from the perspective of the man who might have started it
all, I suggest Nerlove’s (2002) Essays in Panel Data Econometrics. One of the chapters include
Balestra and Nerlove’s (1966, Ecta) attempts to estimate a dynamic panel data model with
random effects. Fixed-effects treatments of dynamic panel data models can be traced to the
two papers by Anderson and Hsiao (1981, JASA; 1982, JoE).

A starting point for nonlinear models are the papers by Chamberlain (1980, ReStud; 1985,
Longitudinal Analysis of Labor Market Data). The 1980 paper also has discussions of the inte-
grated likelihood approach to the incidental parameter problem.

If you want to know more about Monte Carlo simulations, please have a look at Kiviet’s
paper (2012) entitled Monte Carlo Simulation for Econometricians. A copy is available at
econ.ucsb.edu/ doug/245a/Papers/Monte?20Carlo%20Simulation.pdf. The paper
contains exercises and sample scripts. He also discusses some best practices for Monte Carlo
experimental design.



