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The overarching assumption I will assume that we have random sampling over i. Some-

times I might consider random sampling as well over t. Take note that i and t are just indices

for the two dimensions by which the data was generated or gathered.

Omitted Variable Bias Assume that the data are generated by the following model:

yi = β x i +ηzi + εi,

where εi is an error term, x i and zi are scalar zero-mean regressors, and β andη are parameters.

If, for some reason, we compute the OLS estimator from the regression of yi on x i, then we

have the following:

bβ =

∑

x i yi
∑

x2
i

= β +

∑

x izi
∑

x2
i

η+

∑

x iεi
∑

x2
i

= β +
1
n

∑

x izi
1
n

∑

x2
i

η+
1
n

∑

x iεi
1
n

∑

x2
i

p
→ β +

E (x izi)

E
�

x2
i

� η+
E (x iεi)

E
�

x2
i

� .

Think about the conditions under which a consistent estimator for β can be obtained. Can you

also give some reasons why we can only perform an OLS regression of yi on x i? Suppose I

tell you that (a) you get to observe the same i for two periods and (b) zi does not change over

time. How does this small bit of information help in consistently estimating β?

Panel Data Blues, Part 1 Are there any other issues we may have neglected? For instance,

what are the properties of the new error term as a result of the new bit of information? How

will it affect the estimator for β?

Deriving the LSDV estimator Consider the panel data linear regression model:

yi t = αi + x ′i tβ + εi t , (1)
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where i = 1, . . . , n and t = 1, . . . , T . The parameters to be estimated are (α1, . . . ,αn,β) but β

is of interest. It would be useful to use matrix algebra here. Let
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As a result we can stack (1) across time series observations to get

yi = ιTαi + X iβ + εi. (2)

Further let
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We can stack this equation across cross sectional observations to get

y = Dα+ Xβ + ε, (3)

where D = In ⊗ ιT . Since the parameter of interest is β , we have to somehow “get rid” of

the other regressors in D. We can use ideas from the projection interpretation of least squares.

Note that least squares can be thought of as trying to construct an orthogonal decomposition of

regressand into a component predicted from the regressors and a residual component. Suppose

we wish to construct a linear predictor of y using regressors Z1 and Z2. We can estimate

regression coefficients Òγ1 and Òγ2 using least squares and we have y = Òγ1Z1 + Òγ2Z2 + e. Here e

is not an error term but a residual. Let

P2 = Z2

�
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�−1
Z ′2, M2 = I − P2.

The matrix M2 satisfies M2M2 = M2, M2P2 = 0, M2Z2 = 0, and M2e = e. As a result, we have

M2 y = Òγ1M2Z1+ e. We now have a closed form for the OLS estimator for Òγ1 which is given by

Òγ1 =
�

Z ′1M2Z1

�−1
Z ′1M2 y. (4)

Applying (4) to get the OLS estimator for β alone, we have
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bβ =
�
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where MD = In⊗MιT
. Try to explore what MD does to a vector or a matrix. (5) can be rewritten

as
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Think again about the conditions required for consistency of bβ .

Panel Data Blues, Part 2 Something always overlooked when conducting panel data analysis

is the possibility of low longitudinal variation. This means that although you have additional

data on the time-varying regressors, there may not be much variation across time.

Is there an alternative transformation that removes the fixed effects? From the previous

discussion, we have MDD = 0 or MιT
ιT = 0. You know what MD looks like. What does it do

to the error vector? Can you thinnk of an alternative matrix that could eliminate the fixed

effects? Or what properties should this alternative matrix possess? What are the consequences

of selecting these alternatives in terms of their effects on the error vector? If you try working

this out, you will be able to recover what Arellano and Bover (1995, JoE) try to show.

Yet another way to derive the LSDV estimator The projection approach earlier is restricted

to linear models. To link our simple example to more complicated ones, it helps to consider

what we call profiled (or concentrated) objective functions. Consider once again the model in

(1). The least squares objective function is given by

min
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. (6)

Because we envision the possibility of having a large value for n, it is possible to solve a simpler

problem if we could find a way to “get rid” of the αi ’s. We can optimize step-by-step. The first

order conditions for the problem (6) are given by
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Note that we can solve for αi in terms of β in (7), i.e.
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Òαi (β) =
1
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It can be shown that (9) is a solution to the following minimization problem with β fixed:
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Furthermore, once we substitute (9) into (8), we can solve for β . This solution can be obtained

from the following optimization problem:

min
β
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We usually call (10) a profiled (or concentrated) objective function. Try to solve for β and

show that it coincides with the LSDV estimator.

Nonlinear models Is it a good idea to extend this insight from linear models to the nonlinear

case? Consider the following logistic regression model where yi1, . . . , yiT are independently

distributed according to

yi t ∼ Bernoull i (pi t) , pi t =
exp

�

αi + x ′i tβ
�

1+ exp
�

αi + x ′i tβ
� ,

where i = 1, . . . , n and t = 1, . . . , T . What happens if one uses maximum likelihood to estimate

β? Explore this when T = 2. Assume that x i t is fixed in repeated sampling.

Failure of strict exogeneity Return to the original panel data regression model in (1). Let

x i t = yi,t−1. Will the LSDV estimator still be consistent?

Pooled OLS How will the identification conditions change when αi = α?

A unified way of looking at the previous results The previous results can be thought of

as manifestations of the so-called incidental parameter problem. Usually, the parameter of

interest β is called the structural parameter while the nuisance parameters α1, . . . ,αn are called

incidental parameters. Notice that β appears in the probability law of every observation while

αi appears only in the probability law of unit i and nowhere else. As a result, we will be unable

to estimate αi consistently when T is finite. The inability to consistently estimate αi affects the

consistency of β in general.

4



We can formalize this idea by looking at it from a likelihood perspective. Let f (yi t;θ ,αi) be

the density function of yi t . Assume that yi t are independent across i and t. The log-likelihood

is given by

∑

i
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Profiling out the incidental parameters, we obtain the fixed effects estimator bθ which solves

the first order conditions
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Regardless of the asymptotic scheme, the first term has the following stochastic behavior:
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With T fixed and n→∞, the second term does not disappear. This is the incidental parameter

problem. Question: Will allowing T →∞ along with n→∞ be enough? What if we insist

on fixed T?

One way to resolve the incidental parameter problem in the dynamic panel data model

Recall that we have

yi t = αi +ρ yi,t−1 + εi t , (11)

where Cov
�

yi,t−1,εi t

�

= 0 (Any sufficient condition for this?). If we take first differences, we

have

4yi t = ρ4yi,t−1 +4εi t .

For one thing, note that Cov
�

4yi,t−1,4εi t

�

6= 0. What do you notice about Cov
�

yi,t−2,4εi t

�

?

Given this information, what can we do in this situation? Is there any other alternative? Con-

gratulations! You were able to recover the arguments by Anderson and Hsiao (1980 JASA;

1982 JOE). Can we generalize this idea to what some call general predetermined regressors,
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i.e. E (x isεi t) = 0 for s ≤ t? What if we only have contemporaneous exogeneity?

One way to resolve the incidental parameter problem in the static logit model It is

possible to use a portion of the data to form the log-likelihood. In particular, try deriving

Pr (yi2 = 1|x i1, x i2, yi1 + yi2 = 1) and Pr (yi1 = 1|x i1, x i2, yi1 + yi2 = 1). Write out the resulting

likelihood. Will the maximizer of the resulting likelihood be consistent? Will the argument

work for the static probit model? Try extending this to the AR(1) logit model.

What to read Textbook-level treatments are available. Try Hsiao’s Analysis of Panel Data,

Wooldridge’s Econometric Analysis of Cross-Section and Panel Data, or Arellano’s Panel Data

Econometrics. Surveys on the state of the literature are also available. Try Chamberlain (1984,

HoE Vol 2) and Arellano and Honoré (2001, HoE Vol 5). If you want books for specialists but

have wide coverage, try The Econometrics of Panel Data: Fundaments and Recent Develop-

ments in Theory and Practice by Mátyás and Sevestre (2008) or the more recent 2015 Oxford

Handbook of Panel Data (in stores now).

If you want to know more about the history of the incidental parameter problem, check

Neyman and Scott (1948, Ecta) and a 50-year retrospective by Lancaster (2000, JoE). They

are both highly recommended.

If you want a history of panel data from the perspective of the man who might have started it

all, I suggest Nerlove’s (2002) Essays in Panel Data Econometrics. One of the chapters include

Balestra and Nerlove’s (1966, Ecta) attempts to estimate a dynamic panel data model with

random effects. Fixed-effects treatments of dynamic panel data models can be traced to the

two papers by Anderson and Hsiao (1981, JASA; 1982, JoE).

A starting point for nonlinear models are the papers by Chamberlain (1980, ReStud; 1985,

Longitudinal Analysis of Labor Market Data). The 1980 paper also has discussions of the inte-

grated likelihood approach to the incidental parameter problem.

If you want to know more about Monte Carlo simulations, please have a look at Kiviet’s

paper (2012) entitled Monte Carlo Simulation for Econometricians. A copy is available at

econ.ucsb.edu/~doug/245a/Papers/Monte%20Carlo%20Simulation.pdf. The paper

contains exercises and sample scripts. He also discusses some best practices for Monte Carlo

experimental design.
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