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Asymptotic bias of the autoregressive coefficient in the linear dynamic panel data model
Last time, we derived the asymptotic bias of [3 for the case when T = 2 and

Y=+ By +ey (1)
Recall that the LSDV/within estimator /3 has the following asymptotic behavior when n — oo:
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Note that Cov (Ag;,, Ay;;) # 0 because y;; and ¢;; are correlated.
To examine the magnitude of the asymptotic bias, I assumed that y;, is stationary for every
i and that &;, ~ iid (0, 0'2) for every i and t. Recall that E[(e;, — £;1) (i1 — ¥10)] = —0%. I may

have made a small mistake in the calculation of E |:( Vi1 — yl-o)z]. Here is the corrected version:
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If we interpret the a;’s as fixed constants, then

E[(yil _J’io)z] = aiz +(B— 1)2E(J’i20) +]E(€i21) +2a;(f —1)E(y)
+2a;E(g;) +2(B — 1 E (yi0i1)
= a’+(p— 1) [Var (io) + (E ()’io))z] +20a; (B —1)E ()
+2a,E (1) +2(B —1)[Cov (¥ip, €:1) + E (i) E(¥y0)] (2)

Under stationarity of y;,, we need to have the same mean and variance for all ¢t. This means



that

E(y;) = o;+BE(y;—1) +E(e;)
E(y;) = o;+BE(y;)

E(y,) = 1_1/5 (3)

Similarly, the variance is given by

Var (y;) = PB*Var (yi_1)+Var(g;) +2Cov (yi_q, i)

Var (y;,) = B*Var (i) + 0'5

0.2

Var (y;) = 1_6[32 (4)

Substituting (3), (4), and the assumption on ¢;, into (2), we have

2
E[(}’u _}’io)z] = Ug% +0§ = %

If we interpret the a;’s as random variables, then the statements above can be recomputed by
conditioning on a@; and then apply the law of iterated expectations. For example, E (y;,|a;) =
a;/(1—p). The problem is that we have to modify the iid assumption ¢;, ~ iid (O, ai)
slightly. Some would assume E(sitly;_l,ai) = E(&;|Yit—1> Yie—z> -+ > Yio» @) = 0 and some-
times Var (eitlyit_l, ai) = 02. Some would just directly assume that E (y;o¢;,) = 0 for t > 0
and E (a;¢;,) = 0.

Nickell (1981) bias  Nickell (1981) derived the asymptotic bias of the LSDV/within estimator
of the autoregressive coefficient in a linear AR(1) dynamic panel data moel with individual-
specific fixed effects under the assumptions that n — oo, T fixed, stationarity of y;,, and that

the process started in the infinite past. From (1), we have

o
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Assuming E (a;¢;,) = 0 for all ¢t and ¢;, ~ iid (0, aﬁ), we have
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Stacking (1) across all i and t, we have y = Da+y_, 3 +¢. In matrix form, the LSDV estimator

for B (which is a scalar) is given by

[3_ yilMD.y . + J’/_lMDE
yilMD.y—l J’ilMDJ’—l
As always, we have to compute the large sample limit of the second term of the previous

expression. If you go through the derivations, you will find that as n — oo,

1—11_ﬁT
b-p > _1+B T 1-p
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This is not really a neat expression but if we multiply both the nnumerator and denominator

of the above expression by T — 1, we will have

_11-pt
- ﬂ) _1+/5 Tl—ﬂ
1— T1-p
j_11=p
_ 1+ T 1-p
B T 1 28 11-p7
_?_TTL#ﬂ[L_?l—ﬂ]
_11-p7
1+p T 1-p

T 11+ 28(1—p7)
1—= +
T1-f T2(1-B)

Note that
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As a result,

A 1+
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The idea can be extended to allow for strictly exogenous regressors but the closed form is
much harder to obtain. Kiviet (1995, JoE) develops an asymptotic expansion to approximate
the asymptotic bias. He shows that the biggest part of the asymptotic bias is really the O (T _1)
portion. More of this type of work can be found in Kiviet (1999) and Bun and Kiviet (2003).



Asymptotic bias of MLE in static logit model I introduced the static logit model where

exp(a;)
1+exp(a;)

exp(a; + 3)
1+exp(a;+p)

Pr(y; =1lx;; =0,x5,=1,a;)

Pr(}’iz = 1|Xi1 =0,x;= 1,0‘1')

I assumed that y;; and y;, are independent conditional on (x;;, X5, @;). We derived the log-
likelihood function and calculated an estimator for the a; which we called a; (f3). We substi-
tuted the estimator to the score equation d log L (a;,...,a,, )/ = 0 and solved for 3. The
MLE for f is given by

1
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210g[ E(Yialyi1 + Y =1) ]
1-E(Yiulyn +y2=1)

By the law of iterated expectations,

E(Yplya+Ye=L1Lx3;=0,x,=1) = E[E(Yulyqs+y2=1x1=0,x5=1,0a;)]
= E[Pr(yplyn+Yn=1x;=0,x,=1,0a,;)]
_ IE[ exp 3 ]
1+expf

exp 3
1+expf

As a result, [3 =R 23 . When you substitute @; () into the score equation for the parameter of
interest 3, the resulting score is called a profile score. For the MLE to be consistent, it must
be the case that the score has expectation zero. Try writing down the profile score again and
calculate its expectation with respect to the DGP. You will find that the expectation is not zero.
Alternatively, you can substitute @; () into the log-likelihood to obtain a log profile likelihood.
Once again, the log profile likelihood will have a maximizer that is not consistent for 3 because

the maximizer of the expectation of the log profile likelihood is not the true value f3.



