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Asymptotic bias of the autoregressive coefficient in the linear dynamic panel data model

Last time, we derived the asymptotic bias of β̂ for the case when T = 2 and

yi t = αi + β yi t−1 + εi t (1)

Recall that the LSDV/within estimator β̂ has the following asymptotic behavior when n→∞:

β̂
p
→ β −

E [(εi2 − εi1) (yi1 − yi0)]

E
�

(yi1 − yi0)
2
�

Note that Cov (∆εi2,∆yi1) 6= 0 because yi1 and εi1 are correlated.

To examine the magnitude of the asymptotic bias, I assumed that yi t is stationary for every

i and that εi t ∼ iid
�

0,σ2
ε

�

for every i and t. Recall that E [(εi2 − εi1) (yi1 − yi0)] = −σ2
ε
. I may

have made a small mistake in the calculation of E
�

(yi1 − yi0)
2
�

. Here is the corrected version:

E
�

(yi1 − yi0)
2
�

= E
�

(αi + (β − 1) yi0 + εi1)
2
�

= E
�

α2
i

�

+ (β − 1)2E
�

y2
i0

�

+E
�

ε2
i1

�

+ 2 (β − 1)E (αi yi0)

+2E (αiεi1) + 2 (β − 1)E (yi0εi1)

If we interpret the αi ’s as fixed constants, then

E
�

(yi1 − yi0)
2
�

= α2
i + (β − 1)2E

�

y2
i0

�

+E
�

ε2
i1

�

+ 2αi (β − 1)E (yi0)

+2αiE (εi1) + 2 (β − 1)E (yi0εi1)

= α2
i + (β − 1)2

�

Var (yi0) + (E (yi0))
2
�

+ 2αi (β − 1)E (yi0)

+2αiE (εi1) + 2 (β − 1) [Cov (yi0,εi1) +E (εi1)E (yi0)] (2)

Under stationarity of yi t , we need to have the same mean and variance for all t. This means
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that

E (yi t) = αi + βE (yi t−1) +E (εi t)

E (yi t) = αi + βE (yi t)

E (yi t) =
αi

1− β
(3)

Similarly, the variance is given by

Var (yi t) = β2Var (yi t−1) + Var (εi t) + 2Cov (yi t−1,εi t)

Var (yi t) = β2Var (yi t) +σ
2
ε

Var (yi t) =
σ2
ε

1− β2
(4)

Substituting (3), (4), and the assumption on εi t into (2), we have

E
�

(yi1 − yi0)
2
�

= σ2
ε

1− β
1+ β

+σ2
ε
=

2σ2
ε

1+ β

If we interpret the αi ’s as random variables, then the statements above can be recomputed by

conditioning on αi and then apply the law of iterated expectations. For example, E (yi t |αi) =
αi/ (1− β). The problem is that we have to modify the iid assumption εi t ∼ iid

�

0,σ2
ε

�

slightly. Some would assume E
�

εi t |y t−1
i ,αi

�

= E (εi t |yi t−1, yi t−2, . . . , yi0,αi) = 0 and some-

times Var
�

εi t |y t−1
i ,αi

�

= σ2
ε
. Some would just directly assume that E (yi0εi t) = 0 for t > 0

and E (αiεi t) = 0.

Nickell (1981) bias Nickell (1981) derived the asymptotic bias of the LSDV/within estimator

of the autoregressive coefficient in a linear AR(1) dynamic panel data moel with individual-

specific fixed effects under the assumptions that n→∞, T fixed, stationarity of yi t , and that

the process started in the infinite past. From (1), we have

yi t =
αi

1− β
+
∞
∑

l=0

β lεi t−l

Assuming E (αiεi t) = 0 for all t and εi t ∼ iid
�

0,σ2
ε

�

, we have

yi t |αi ∼ iid

�

αi

1− β
,
σ2
ε

1− β2

�
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Stacking (1) across all i and t, we have y = Dα+ y−1β+ε. In matrix form, the LSDV estimator

for β (which is a scalar) is given by

β̂ =
y ′−1MD y

y ′−1MD y−1
= β +

y ′−1MDε

y ′−1MD y−1

As always, we have to compute the large sample limit of the second term of the previous

expression. If you go through the derivations, you will find that as n→∞,

β̂ − β
p
→ −

1+ β
T − 1

1−
1
T

1− β T

1− β

1−
2β

(1− β) (T − 1)

�

1−
1
T

1− β T

1− β

�

This is not really a neat expression but if we multiply both the nnumerator and denominator

of the above expression by T − 1, we will have

β̂ − β
p
→ −

1+ β
1

1−
1
T

1− β T

1− β

T − 1−
2β

1− β

�

1−
1
T

1− β T

1− β

�

= −
1+ β

T

1−
1
T

1− β T

1− β

1−
1
T
−

2β
T (1− β)

�

1−
1
T

1− β T

1− β

�

= −
1+ β

T

1−
1
T

1− β T

1− β

1−
1
T

1+ β
1− β

+
2β
�

1− β T
�

T 2 (1− β)2

Note that
�

1−
1
T

1+ β
1− β

+
2β
�

1− β T
�

T 2 (1− β)2

�−1

= 1+
1
T

1+ β
1− β

+O
�

T−2
�

As a result,

β̂ − β
p
→−

1+ β
T
+O

�

T−2
�

The idea can be extended to allow for strictly exogenous regressors but the closed form is

much harder to obtain. Kiviet (1995, JoE) develops an asymptotic expansion to approximate

the asymptotic bias. He shows that the biggest part of the asymptotic bias is really the O
�

T−1
�

portion. More of this type of work can be found in Kiviet (1999) and Bun and Kiviet (2003).
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Asymptotic bias of MLE in static logit model I introduced the static logit model where

Pr (yi1 = 1|x i1 = 0, x i2 = 1,αi) =
exp (αi)

1+ exp (αi)

Pr (yi2 = 1|x i1 = 0, x i2 = 1,αi) =
exp (αi + β)

1+ exp (αi + β)

I assumed that yi1 and yi2 are independent conditional on (x i1, x i2,αi) . We derived the log-

likelihood function and calculated an estimator for the αi which we called Òαi (β). We substi-

tuted the estimator to the score equation ∂ log L (α1, . . . ,αn,β)/∂ β = 0 and solved for β . The

MLE for β is given by

β̂ = 2 log







1
n

∑

{i:yi1+yi2=1} yi2

1−
1
n

∑

{i:yi1+yi2=1} yi2







p
→ 2 log

� E (yi2|yi1 + yi2 = 1)
1−E (yi2|yi1 + yi2 = 1)

�

By the law of iterated expectations,

E (yi2|yi1 + yi2 = 1, x i1 = 0, x i2 = 1) = E [E (yi2|yi1 + yi2 = 1, x i1 = 0, x i2 = 1,αi)]

= E [Pr (yi2|yi1 + yi2 = 1, x i1 = 0, x i2 = 1,αi)]

= E
�

expβ
1+ expβ

�

=
expβ

1+ expβ

As a result, β̂
p
→ 2β . When you substitute Òαi (β) into the score equation for the parameter of

interest β , the resulting score is called a profile score. For the MLE to be consistent, it must

be the case that the score has expectation zero. Try writing down the profile score again and

calculate its expectation with respect to the DGP. You will find that the expectation is not zero.

Alternatively, you can substitute Òαi (β) into the log-likelihood to obtain a log profile likelihood.

Once again, the log profile likelihood will have a maximizer that is not consistent for β because

the maximizer of the expectation of the log profile likelihood is not the true value β .
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