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Return to the dynamic panel data example Last time, we considered a set of moment

restrictions for the autoregressive coefficient of the dynamic panel data model. It turns out

that we can collect them in a more systematic manner and this leads to the GMM estimator

proposed by Arellano and Bond (1989, ReStud).

It is possible to add more moment restrictions aside from the ones mentioned. A very special

moment restriction is one proposed by Ahn and Schmidt (1995, JoE):

E
�

(αi + εi t)
�

εi t − εi,t−1

��

= 0.

Try rewriting this moment restriction in terms of the yi t ’s. Comment on how this moment

restriction differ from what we have seen so far.

Assume that E [yi0|ηi] = ηi/ (1− γ). What additional moment restrictions are implied by

this? The restrictions that you derive are related to those considered in Blundell and Bond

(1998, JoE).

Another possible solution in the linear panel data setting Assume that E [ε|X ] = 0 and

Var [ε|X ] = Ω, where Ω= σ2
α
ιT ι
′
T +σ

2
ε
InT . We can now use GLS to derive an estimator for this

random effects model. The GLS estimator has a nice property where it is a matrix-weighted

average of the within and between estimator. Will this work for the dynamic panel data setting?

Yet another possible solution in the linear panel data setting Let αi = x̄ ′iδ + νi where

νi is uncorrelated with x̄ i. Further assume that x is strictly exogenous. Is the OLS estimator

consistent in this situation? How does this estimator related to the within estimator? Com-

pare with the situation where we ignore αi. What does this type of argument remind you of?

The argument here is the spirit of Mundlak (1978, Ecta). Chamberlain (1984, HoE) proposes

αi = x i1δ1 + · · · x iTδT + νi instead. How will the argument in Mundlak change? Do we have

overidentifying restrictions?
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Mundlak-Chamberlain device for the dynamic panel data model For i = 1, . . . , n, the

structural equations are given by

yi t = αyi,t−1 + β x i t +ηi + εi t . (1)

Stacking the above equation across all t, we have
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The device relies on a linear projection of yi t on all lagged, present and future x ’s, i.e.,

yi t = πt1 x i1 + · · ·+πtT x iT +wi t ,

where E (wi t x is) = 0 for all s, t. Stacking the above equation across all t, we have
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As a result, Π = E
�

yi x
′
i

� �

E
�

x i x
′
i

��−1
. Multiplying both sides of (1) by x ′i and taking expecta-

tions, we have the following moment restrictions:

E
�

yi x
′
i

�

= αE
�

yi,−1 x ′i
�

+ βE
�

x i x
′
i

�

+ E
�

ξi x
′
i

�

E
�

yi x
′
i

� �

E
�

x i x
′
i

��−1
= αE

�

yi,−1 x ′i
� �

E
�

x i x
′
i

��−1
+ β I + E

�

ξi x
′
i

� �

E
�

x i x
′
i

��−1
(2)

By making assumptions about the elements of the matrix E
�

ξi x
′
i

�

through the projection of ηi

on x i, we may be able to identify α and β . For instance, let us assume T = 2, strict exogeneity

of x , and ηi = x i1δ1 + x i2δ2 + ui. As a result, we have

�

π11 π12

π21 π22

�

= β I +α

�

E (yi0 x i1) E (yi0 x i2)
E (yi1 x i1) E (yi1 x i2)

�

�

E
�

x i x
′
i

��−1
+

�

δ1 δ2

δ1 δ2

�

�

E
�

x i x
′
i

��−1
.

The above matrix equation is a system of 4 linear equations in 4 unknowns (α,β ,δ1,δ2). In

this case, we needed data on the initial values yi0. If we had a linear projection of yi0 on x i,
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the matrix equation will become a system of 4 nonlinear equations in 6 unknowns (four plus

two additional projection coefficients from a linear projection of yi0 on x i). We need additional

restrictions to augment the 4 nonlinear equations.

Kotlarski’s lemma Suppose that (Y1, Y2) = (A+ U1, A+ U2), where (A, U1, U2) are mutually

independent and E (U1) = 0. Then the distribution of A is identified.

To prove this, consider the moment generating function of (Y1, Y2), i.e.

φY1,Y2
(s1, s2) = E [exp ((s1 + s2)A+ s1U1 + s2U2)] = φA (s1 + s2)φU1

(s1)φU2
(s2) .

Take the derivative of this expression with respect to s1. You will have

∂ φY1,Y2
(s1, s2)

∂ s1
= φ′A (s1 + s2)φU1

(s1)φU2
(s2) +φA (s1 + s2)φ

′
U1
(s1)φU2

(s2) .

As a result,

∂ φY1,Y2
(s,−s)

∂ s1

φY1,Y2
(s,−s)

=
φ′A (0)φU1

(s)φU2
(−s) +φA (0)φ′U1

(s)φU2
(−s)

φA (0)φU1
(s)φU2

(−s)
=
φ′A (0)

φA (0)
+
φ′U1
(s)

φU1
(s)

.

Note thatφA (0) = 1, φ′A (0) = E (A) = E (Y1). Thus, we can identifyφU1
(s) and the distribution

of U1. To identify the distribution of A, note that the mgf calculated above can be evaluated as

(s, 0).

Some nonparametric stuff How does the lemma relate to the identification of a nonpara-

metric random effects model? Consider Yt = m (X t ,α) + εt . Take T = 2. Assume that

(ε1,ε2)⊥ (X1, X2,α). Further assume that these errors have mean zero. Try reframing the

setting in terms of the conditions of Kotlarski’s lemma.

A simple example to illustrate approximate solutions to the incidental parameter problem

Let yi t be iid draws from a N
�

αi0,σ2
0

�

distribution for i = 1, . . . , n and t = 1, . . . , T . The log-

likelihood for one observation is given by

log f
�

yi t;αi,σ
2
�

= −
1
2

log 2π−
1
2

log σ2 −
(yi t −αi)

2

2σ2
.
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The MLE satisfies the following first order conditions:

∑

i

∑

t

�

−
1

2σ2
+
(yi t −αi)

2

2σ4

�

= 0,

∑

t

� yi t −αi

σ2

�

= 0.

Profiling out the αi ’s using the second equation above gives

Òαi

�

σ2
�

=
1
T

∑

t

yi t . (3)

Substituting this to the first equation and solving for θ gives

cσ2 =
1

nT

∑

i

∑

t

(yi t − ȳi)
2 . (4)

Two things to note right away: (3) does not depend on σ2 and both 3 and (4) are available

in closed form. The normality and independence assumptions allows us to conclude that ȳi ∼
N
�

αi0,σ2
0/T

�

. Thus, yi t − ȳi ∼ N
�

0,σ2
0 −σ

2
0/T

�

. As a result,

∑

i

∑

t

�

(yi t − ȳi)
2

σ2
0

�

1− 1
T

�

�

∼ χ2
nT .

Furthermore,

Ecσ2 = E

�

σ2
0

�

1−
1
T

�

1
nT

∑

i

∑

t

(yi t − ȳi)
2

σ2
0

�

1− 1
T

�

�

= σ2
0

�

1−
1
T

�

1
nT
E
�

χ2
nT

�

= σ2
0

�

1−
1
T

�

.

As a consequence, (4) is not an unbiased estimator of σ2 in finite samples. If we want to deter-

mine if this finite sample bias disappears in large samples, we have to think of the dimensions

in which sample sizes grow. If T is fixed and if we let n→∞, then the finite sample bias does

not disappear at all. If we choose to let T →∞ and let n be fixed, then (4) is a consistent

estimator of σ2. But letting T →∞may not be the most appropriate asymptotic setting when

we have panels that have short T . In microeconometric panels, it is usually the case that n

is large. Therefore, we have to find ways to remove the bias. Note that the bias is of order

O
�

T−1
�

.

When both n, T →∞ at some unspecified rate, cσ2 will not be consistent for σ2
0. Although

we have consistency when n, T → ∞ at some rate, the limiting distribution of cσ2 may be
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incorrectly centered. Consider the limiting distribution of
p

nT
�

cσ2 −σ2
0

�

. We have

p
nT
�

cσ2 −σ2
0

�

=
p

nT

�

1
nT

∑

i

∑

t

(yi t − ȳi)
2 −σ2

0

�

=
p

nT

�

1
nT

∑

i

∑

t

(yi t −αi0 +αi0 − ȳi)
2 −σ2

0

�

=
p

nT

�

1
nT

∑

i

∑

t

(yi t −αi0)
2 −σ2

0

�

︸ ︷︷ ︸

Z1

−
p

nT

�

1
n

∑

i

( ȳi −αi0)
2

�

︸ ︷︷ ︸

Z2

where Z1
d
→ N

�

0,2σ4
0

�

as n, T →∞ and

Z2 =
s

n
T
σ2

0

�

1
n

∑

i

�

ȳi −αi0

σ0/
p

T

�2�

=
s

n
T
σ2

0

�

1
n

∑

i

χ2
1

�

p
→ κσ2

0

as n, T →∞ while n/T → κ2.1 As a result, we have

p
nT

�

cσ2 −σ2
0 +
σ2

0

T

�

d
→ N

�

0, 2σ4
0

�

When will the noncentrality parameter disappear? Propose a procedure to remove the non-

centrality parameter.

Changing the asymptotic setting We have seen an indication that the bias in the estimator

for the parameter of interest in a model with incidental parameters is of order O
�

T−1
�

. We can

think of this bias as time series finite sample bias and consider an asymptotic setting where both

n, T →∞ and n/T → c. Allowing this new asymptotic setting will allow us to approximate

the asymptotic bias in the estimator and then reduce its impact.

Assume that

plim
n→∞

bθ = θT ,

lim
n→∞

θT = θ0,

θT = θ0 +
B
T
+O

�

T−2
�

,
p

nT
�

bθ − θT

�

→ N (0,Ω) .

1The result depends on sequential asymptotics. Here, we have T →∞ first then n→∞.
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Then

p
nT
�

bθ − θ0

�

=
p

nT
�

bθ − θT

�

+
p

nT (θT − θ0)

=
p

nT
�

bθ − θT

�

+
p

nT
B
T
+
p

nTO
�

T−2
�

=
p

nT
�

bθ − θT

�

+
s

n
T

B +O
�s

n
T 3

�

→ N
�

B
p

c,Ω
�

. (5)

Note that (5) is not centered at 0. Take note that under this new asymptotic setting, bθ is

consistent for θ ! But the asymptotic distribution has a noncentrality term B
p

c. How can we

get rid of this noncentrality term? Answering this and characterizing this term is essential for

the practical purpose of bias reduction and for the theoretical purpose of understanding the

source of incidental parameter bias.

What to read The asymptotic bias of the structural parameters in the linear AR(1) dynamic

panel data model has been derived by Nickell (1981, Ecta). Bias corrections (roughly) based

on these formulas have been considered by Kiviet (1995, JoE) and Bun and Carree (2005,

JBES). Monte Carlo simulations for GMM estimators can be found in the articles already cited

above. There are more of these simulations scattered in the literature; see Bond and Wind-

meijer (2005, EctRev), Bun and Kiviet (2006, JoE), Kiviet, Pleus, and Poldermans (2015), and

Bun and Sarafidis (2015).

The last decade of panel data econometrics has been about characterizing the incidental

parameter bias formally. This research has not really been widely used in practice and has not

been featured in modern textbooks. Therefore, the papers are still the best source materials.

For static models, see Hahn and Newey (2004, Ecta). For dynamic models, see Hahn and

Kuersteiner (2011, ET). For other related papers, check their references for more.

The discussion of the nonparametric random effects model can be found in Evdokimov’s

dissertation (I think this will eventually appear in Econometrica). The nonparametric random

effects model introduced here is very different to the panel data models found in the book by

Li and Racine (2008).
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