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Return to the dynamic panel data example Last time, we considered a set of moment
restrictions for the autoregressive coefficient of the dynamic panel data model. It turns out
that we can collect them in a more systematic manner and this leads to the GMM estimator
proposed by Arellano and Bond (1989, ReStud).

It is possible to add more moment restrictions aside from the ones mentioned. A very special

moment restriction is one proposed by Ahn and Schmidt (1995, JoE):

E [(ai + Eit) (git - lc;i,t—l)] =0.

Try rewriting this moment restriction in terms of the y;’s. Comment on how this moment
restriction differ from what we have seen so far.

Assume that E[y,,|n;] = n;/ (1 —7y). What additional moment restrictions are implied by
this? The restrictions that you derive are related to those considered in Blundell and Bond
(1998, JoE).

Another possible solution in the linear panel data setting Assume that E[¢|X] = 0 and
Var [¢]X]=Q, where Q = 02117, + 02I,;. We can now use GLS to derive an estimator for this
random effects model. The GLS estimator has a nice property where it is a matrix-weighted

average of the within and between estimator. Will this work for the dynamic panel data setting?

Yet another possible solution in the linear panel data setting Let a; = X/6 + v; where
v; is uncorrelated with x;. Further assume that x is strictly exogenous. Is the OLS estimator
consistent in this situation? How does this estimator related to the within estimator? Com-
pare with the situation where we ignore a;. What does this type of argument remind you of?
The argument here is the spirit of Mundlak (1978, Ecta). Chamberlain (1984, HoE) proposes
a; =x;10;+ - x;707 + v; instead. How will the argument in Mundlak change? Do we have

overidentifying restrictions?



Mundlak-Chamberlain device for the dynamic panel data model For i = 1,...,n, the

structural equations are given by
Yie = oY t+Bx;+n;teg. (D

Stacking the above equation across all t, we have
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The device relies on a linear projection of y,, on all lagged, present and future x’s, i.e.,
Yie = TaXpt:ot TpXr Wi,

where E (w;,x;;) =0 for all s, t. Stacking the above equation across all t, we have
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As aresult, IT = E (y,x]) [ E (x;x] )]_1. Multiplying both sides of (1) by x; and taking expecta-

tions, we have the following moment restrictions:

E(yix]) = aE(y,1x])+BE (xx]) +E (&)
E(rx)[E(ex))]” = aB(yimax))[E(xx)] " +p1+E(Ex)[E(x)] @
By making assumptions about the elements of the matrix E (E i X ) through the projection of 7,

on x;, we may be able to identify a and 3. For instance, let us assume T = 2, strict exogeneity

of x, and n; = x;; 67 + x;,06, + u;. As a result, we have
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The above matrix equation is a system of 4 linear equations in 4 unknowns (a, 3,6,,6,). In

this case, we needed data on the initial values y,,. If we had a linear projection of y;, on x;,



the matrix equation will become a system of 4 nonlinear equations in 6 unknowns (four plus
two additional projection coefficients from a linear projection of y;, on x;). We need additional

restrictions to augment the 4 nonlinear equations.

Kotlarski’s lemma Suppose that (Y;,Y,) = (A+ U;,A+ U,), where (4, U,, U,) are mutually
independent and E (U;) = 0. Then the distribution of A is identified.

To prove this, consider the moment generating function of (Y3, Y;), i.e.

bv,y, (51,52) = E[exp((s1 +52) A+ 5,Up +5,U5)]1 = da (51 +52) Py, (51) P, (52) -
Take the derivative of this expression with respect to s;. You will have

a<I51/1,Y2 (51,82)

a5 = flb;\ (s1+52) ¢U1 (s1) ¢U2 (52) + Palsy +s,) ¢{j1 (s1) ¢U2 (s2)-
1

As a result,
aqul,Yz (s,—s)
ds, ~ $4(0) ¢y, (5) by, (=) + Pa(0) Py, () P, (=5) 47 (0) s ¢y, ()
¢Y1,Y2 (s,—s) B $4(0) ¢U1 (s) ¢)U2 (—s) a $4(0) ¢U1 (s)

Note that ¢, (0) =1, ¢, (0) = E(A) = E(Y;). Thus, we can identify ¢, (s) and the distribution
of U;. To identify the distribution of A, note that the mgf calculated above can be evaluated as
(s,0).

Some nonparametric stuff How does the lemma relate to the identification of a nonpara-
metric random effects model? Consider Y, = m(X,,a) + ¢,. Take T = 2. Assume that
(€1,8,) L(X1,X,,a). Further assume that these errors have mean zero. Try reframing the

setting in terms of the conditions of Kotlarski’s lemma.

A simple example to illustrate approximate solutions to the incidental parameter problem
Let y;, be iid draws from a N (aio, 0(2)) distribution fori =1,...,nand t = 1,...,T. The log-
likelihood for one observation is given by

1 1 (yl _ai)Z
logf(J’it;ai,O'z)Z—Elog 27T—§10g O-Z_tzT'



The MLE satisfies the following first order conditions:
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Profiling out the a;’s using the second equation above gives

1
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Substituting this to the first equation and solving for 6 gives
— 1 _ .2
o2 = EZZ e =5 4

Two things to note right away: (3) does not depend on ¢ and both 3 and (4) are available
in closed form. The normality and independence assumptions allows us to conclude that y; ~
N (ay,02/T). Thus, y;, — y; ~ N (0,02 — 02/T). As a result,

i =3’ ~ 2
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Furthermore,

- \2
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As a consequence, (4) is not an unbiased estimator of o2 in finite samples. If we want to deter-
mine if this finite sample bias disappears in large samples, we have to think of the dimensions
in which sample sizes grow. If T is fixed and if we let n — ©0o, then the finite sample bias does
not disappear at all. If we choose to let T — o0 and let n be fixed, then (4) is a consistent
estimator of 2. But letting T — oo may not be the most appropriate asymptotic setting when
we have panels that have short T. In microeconometric panels, it is usually the case that n
is large. Therefore, we have to find ways to remove the bias. Note that the bias is of order
o(T71).

When both n, T — oo at some unspecified rate, o2 will not be consistent for O'S. Although

we have consistency when n,T — o0 at some rate, the limiting distribution of 2 may be



incorrectly centered. Consider the limiting distribution of v'nT (5\2 — ag). We have
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asn, T — oo while n/T — k2.! As a result, we have
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When will the noncentrality parameter disappear? Propose a procedure to remove the non-

centrality parameter.

Changing the asymptotic setting We have seen an indication that the bias in the estimator
for the parameter of interest in a model with incidental parameters is of order & (T_l). We can
think of this bias as time series finite sample bias and consider an asymptotic setting where both
n,T — oo and n/T — c. Allowing this new asymptotic setting will allow us to approximate
the asymptotic bias in the estimator and then reduce its impact.

Assume that

plim 6 = Or,
lil‘glo 9T - 90,
B -2
O = 6+-+0 (T72),

VnT (6—6;) — N(0,9).

!The result depends on sequential asymptotics. Here, we have T — oo first then n — co.



Then

VnT (6 —6,) = vnT(6—6;)+vnT (6;—6,)
= VAT (0—6,)+ VAT + VaTo (1)

= «/n_T(§—9T)+\/¥B+6’(\/§)
— N(Bvc,Q). (5)

-~

Note that (5) is not centered at 0. Take note that under this new asymptotic setting, 6 is
consistent for 8! But the asymptotic distribution has a noncentrality term B4/c. How can we
get rid of this noncentrality term? Answering this and characterizing this term is essential for
the practical purpose of bias reduction and for the theoretical purpose of understanding the
source of incidental parameter bias.

What to read The asymptotic bias of the structural parameters in the linear AR(1) dynamic
panel data model has been derived by Nickell (1981, Ecta). Bias corrections (roughly) based
on these formulas have been considered by Kiviet (1995, JoE) and Bun and Carree (2005,
JBES). Monte Carlo simulations for GMM estimators can be found in the articles already cited
above. There are more of these simulations scattered in the literature; see Bond and Wind-
meijer (2005, EctRev), Bun and Kiviet (2006, JoE), Kiviet, Pleus, and Poldermans (2015), and
Bun and Sarafidis (2015).

The last decade of panel data econometrics has been about characterizing the incidental
parameter bias formally. This research has not really been widely used in practice and has not
been featured in modern textbooks. Therefore, the papers are still the best source materials.
For static models, see Hahn and Newey (2004, Ecta). For dynamic models, see Hahn and
Kuersteiner (2011, ET). For other related papers, check their references for more.

The discussion of the nonparametric random effects model can be found in Evdokimov’s
dissertation (I think this will eventually appear in Econometrica). The nonparametric random
effects model introduced here is very different to the panel data models found in the book by
Li and Racine (2008).



