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What is identification?

1 Conjures up memories of models involving simultaneous
equations and instrumental variables; Demand-supply
diagrams are the usual examples.

2 Early encounters already in the classical linear regression
model

3 (Not so exciting, but ...) Let Yi = a + bxi + δi for
i = 1, . . . , 100. The xi ’s are known and fixed at 2 for all i .
Assume further that δi ’s are iid, E(δi ) = 0, and var(δi ) = σ2.
Can we identify the parameters a, b, σ2?

4 In slightly advanced courses, you may have encountered
identification issues in binary choice models.

5 Bottom line: We want to characterize what can be learned
about some parameter θ from observables.

6 Elements: Data collection assumptions and data generation
assumptions



”Rough” definitions

Suppose Pθ is the probability distribution that governs an
observable random variable X .

1 The function f (θ) is identifiable if

f (θ1) 6= f (θ2) =⇒ Pθ1 6= Pθ2 .

for every (θ1, θ2).

2 The function f (θ) is estimable if there exists a function g
depending only on the observables such that

Eθ[g(X )] = f (θ).

So, what is the relationship between identifiability and
estimability? Let us work through Exercise Set C.



Why should we be concerned about identification?

1 One of the ingredients in a consistency proof (though
obscured or reformulated most of the time)

2 Can be useful in the construction of estimators outside the
likelihood framework

3 “Before any inferential procedure can be developed, one needs
to assert that the unknown parameters are identifiable.”
(Basu, EOSS)

4 Pushed to the extreme: “If two parameter values imply the
same distribution of the data, no observed data can
distinguish between them, and there will be no point in
attempting to estimate those parameters. Thus consideration
of identification is a question that logically precedes
estimation.” (Schmidt, EOSS)



Newey and McFadden (1994) Theorem 2.1

Let Q̂n(θ) be some objective function such that θ̂ maximizes Q̂n(θ)
subject to θ ∈ Θ. If there is a function Q0(θ) such that

1 Q0(θ) is uniquely maximized at θ0;

2 Θ is compact;

3 Q0(θ) is continuous;

4 supθ∈Θ |Q̂n(θ)− Q0(θ)| p→ 0,

then θ̂
p→ θ0.



Likelihood and extremum based identification

1 (ML) Let f (z |θ) be some pdf. If
• θ0 is identified,
• E[| log f (z |θ)|] <∞ for all θ,

then
Q0(θ) = E[log f (z |θ)]

has a unique maximum at θ0.

2 (GMM) Let g0(θ) = E[g(z , θ)] be some set of population
moments. If

• W is positive semidefinite,
• g0(θ0) = 0,
• Wg0(θ) 6= 0 for θ 6= θ0,

then
Q0(θ) = −g0(θ)′Wg0(θ)

has a unique maximum at θ0.



The search for primitive conditions

1 (Multivariate regression) Let Y be a k × 1 vector which is
multivariate normal with mean Xβ0 and nonsingular
covariance matrix Σ0 (general) or Σ0 = σ2

0I .

2 (Probit) Let z = (y , x ′) where y ∈ {0, 1} and x is a q × 1
vector of regressors. Consider the pdf

f (z |θ) = [Φ(x ′θ)]y [1− Φ(x ′θ)]1−y ,

where Φ is the standard normal cdf.

3 (IV) Let z = (x ′, y ,Y ′), where x is a vector of instrumental
variables, y is the dependent variable, and Y ′ is a vector of
RHS endogenous variables.Consider the moment function

g(z , θ) = x ′(y − Y ′θ)



The search ain’t over I

1 (Linear IV) Suppose Y = α + βX + U where E(U|Z ) = c .
When can we identify β?

2 (A step to nonlinear IV regression) Suppose
Y = α + βX + γX 2 + U where E(U|Z ) = c . When can we
identify β and γ?

3 (Nonparametric IV) Let X ∈ {x1, . . . , xM} and
Z = {z1, . . . , zK}. Suppose Y = h(X ) + U with E(U|Z ) = 0.
Can we identify h?

4 (MA processes) Let Xt = µ+ b0εt + b1εt−1 + . . .+ bpεt−p.
Assume for the moment that εt ∼ iid N(0, σ2). We observe
Xt but not the ε’s. Can we identify the b’s and µ? Take the
case where p = 1.



The search ain’t over II

5 (Simultaneous equations) Let

Y1 = βY2 + γZ + ε1

Y2 = δY1 + ε2

Suppose E(ε1Z ) = E(ε2Z ) = 0. Can we identify δ? How
about β?

6 (Panel binary choice) Suppose (Y1,Y2,Y3, α) is a random
vector such that

Pr(Y1 = 1|α) = p1(α)

Pr(Y2 = 1|α,Y1) = F (α + γY1)

Pr(Y3 = 1|α,Y1,Y2) = F (α + γY2)

where p1 and F are both unknown functions with range in
[0, 1]. In addition, F is strictly increasing.



The search ain’t over III

7 (Dynamic panel data) Arellano and Bond (1991) proposed
linear moment conditions of the form

E[yis(∆yit − α∆yi ,t−1)] = 0, s = 0, . . . , t − 2; t = 2, . . . ,T ,

to identify α0 in the dynamic panel data model
yit = α0yi ,t−1 + ci + vit under the following assumptions:

• E(vit) = 0, t = 1, . . . ,T
• E(vityi0) = 0, t = 1, . . . ,T
• E(vitci ) = 0, t = 1, . . . ,T
• E(visvit) = 0, s = 1, . . . , t − 1; t = 1, . . . ,T

When will these linear moment conditions fail to identify α0?

8 (Dynamic panel data) What if one uses Ahn-Schmidt
quadratic moment conditions?

E[yiT − yi ,T−1α)(∆yit − α∆yi ,t−1)] = 0, t = 2, . . . ,T



Pötscher and Prucha’s (1997) Lemma 3.1

Let Rn : Ω× B → R and Rn : B → R such that a.s.

sup
B
|Rn(ω, β)− Rn(β)| → 0 as n→∞.

Let βn be an identifiably unique sequence of minimizers of Rn(β),

then for any sequence β̂n such that eventually

Rn(ω, β̂n) = inf
B

Rn(ω, β)

holds, we have ρB(β̂n, βn)→ 0 a.s. as n→∞.



Remarks

1 If Rn does not depend on n and the parameter space B is
compact, then identifiable uniqueness is equivalent to the
existence of a unique minimizer of R.

2 This only happens under correct specification.

3 Under misspecification, we might have a set of minimizers.

4 A reparametrization may be possible so that the lack of
identification disappears.

5 See Section 4.6 of Pötscher and Prucha (1997) for more
discussion of the identification conditions under
misspecification.



Identifiability and consistency

1 Observe that if there exists a consistent estimator for a
parameter θ, then the parameter is identifiable.

2 Gabrielsen (1978, JoE) gives a counterexample to show that
the converse is not true.

3 Consider the model where Yi = βρi + εi , i = 1 . . . , n. Assume
that ρ is known with ρ < 1, εi ∼ iid N(0, 1) and β > 0.

4 Note that β is identifiable from the first moment of Yi .

5 Form the ML estimator for β and show that it is not
consistent.



A different type of argument: Measurement error model

Consider the model:

Y1 = η1 + ε1

Y2 = η2 + ε2

where

1 η2 = α + βη1

2 η1 ⊥ (ε1, ε2)

3 (ε1, ε2) is bivariate normal with mean (0, 0) and covariance
matrix Σ

4 Y1 and Y2 are observable, but η1 and η2 are unobservable

A classic result: β is identifiable iff (η1, η2) is not bivariate normal.


