

Topics in Econometrics: Identification

Presented by Andrew Adrian Yu Pua

Universität Passau

April 6, 2016

- ① Defining identification – What can learned about some parameter from observables?
- ② Ingredients – How were the data collected? How were the data generated?
- ③ A lot of examples showing restrictions that are needed to obtain identification – mostly rank-type conditions or subject-matter considerations
- ④ The by-products of identification arguments – give an understanding of identification failure; understand the extent of subject-matter knowledge that is required; which assumptions matter and which don't; a starting point to construct estimators
- ⑤ We now continue with more examples and move to more general settings.

- ① (MA processes) Let $X_t = \mu + b_0\epsilon_t + b_1\epsilon_{t-1} + \dots + b_p\epsilon_{t-p}$. Assume for the moment that $\epsilon_t \sim \text{iid } N(0, \sigma^2)$. We observe X_t but not the ϵ 's. Can we identify the b 's and μ ? Take the case where $p = 1$.
- ② (Simultaneous equations) Let

$$\begin{aligned}Y_1 &= \beta Y_2 + \gamma Z + \epsilon_1 \\Y_2 &= \delta Y_1 + \epsilon_2\end{aligned}$$

Suppose $\mathbb{E}(\epsilon_1 Z) = \mathbb{E}(\epsilon_2 Z) = 0$. Can we identify δ ? How about β ?

③ (Panel binary choice) Suppose (Y_1, Y_2, Y_3, α) is a random vector drawn independently such that

$$\Pr(Y_1 = 1|\alpha) = p_1(\alpha)$$

$$\Pr(Y_2 = 1|\alpha, Y_1) = F(\alpha + \gamma Y_1)$$

$$\Pr(Y_3 = 1|\alpha, Y_1, Y_2) = F(\alpha + \gamma Y_2)$$

where p_1 and F are both unknown functions with range in $[0, 1]$. In addition, F is strictly increasing.

The search ain't over III

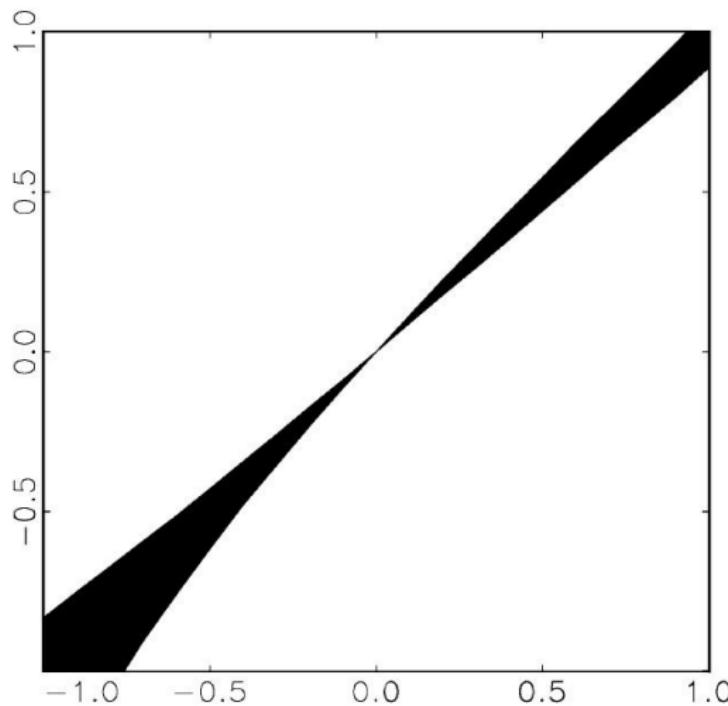


FIGURE 1.—Identified region for γ as a function of its true value.

④ (Dynamic panel data) Arellano and Bond (1991) proposed linear moment conditions of the form

$$\mathbb{E}[y_{is}(\Delta y_{it} - \alpha \Delta y_{i,t-1})] = 0, \quad s = 0, \dots, t-2; \quad t = 2, \dots, T,$$

to identify α_0 in the dynamic panel data model

$y_{it} = \alpha_0 y_{i,t-1} + c_i + v_{it}$ under the following assumptions:

- $\mathbb{E}(v_{it}) = 0, \quad t = 1, \dots, T$
- $\mathbb{E}(v_{it} y_{i0}) = 0, \quad t = 1, \dots, T$
- $\mathbb{E}(v_{it} c_i) = 0, \quad t = 1, \dots, T$
- $\mathbb{E}(v_{is} v_{it}) = 0, \quad s = 1, \dots, t-1; \quad t = 1, \dots, T$

When will these linear moment conditions fail to identify α_0 ?

⑤ (Dynamic panel data) What if one uses Ahn-Schmidt quadratic moment conditions?

$$\mathbb{E}[(y_{iT} - y_{i,T-1}\alpha)(\Delta y_{it} - \alpha \Delta y_{i,t-1})] = 0, \quad t = 2, \dots, T$$

Pötscher and Prucha's (1997) Lemma 3.1

Let $R_n : \Omega \times B \rightarrow \mathbb{R}$ and $\bar{R}_n : B \rightarrow \mathbb{R}$ such that a.s.

$$\sup_B |R_n(\omega, \beta) - \bar{R}_n(\beta)| \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Let $\bar{\beta}_n$ be an **identifiably unique** sequence of minimizers of $\bar{R}_n(\beta)$, then for any sequence $\widehat{\beta}_n$ such that eventually

$$R_n(\omega, \widehat{\beta}_n) = \inf_B R_n(\omega, \beta)$$

holds, we have $\rho_B(\widehat{\beta}_n, \bar{\beta}_n) \rightarrow 0$ a.s. as $n \rightarrow \infty$.

- ① If \bar{R}_n does not depend on n and the parameter space B is compact, then identifiable uniqueness is equivalent to the existence of a unique minimizer of \bar{R} .
- ② This only happens under correct specification.
- ③ Under misspecification, we might have a set of minimizers.
- ④ A reparametrization may be possible so that the lack of identification disappears.
- ⑤ See Section 4.6 of Pötscher and Prucha (1997) for more discussion of the identification conditions under misspecification.

- ① Observe that if there exists a consistent estimator for a parameter θ , then the parameter is identifiable.
- ② Gabrielsen (1978, JoE) gives a counterexample to show that the converse is not true.
- ③ Consider the model where $Y_i = \beta\rho^i + \epsilon_i$, $i = 1 \dots, n$. Assume that ρ is known with $\rho < 1$, $\epsilon_i \sim \text{iid } N(0, 1)$ and $\beta > 0$.
- ④ Note that β is identifiable from the first moment of Y_i .
- ⑤ Form the ML estimator for β and show that it is not consistent.

A different type of argument: Measurement error model

Consider the model:

$$Y_1 = \eta_1 + \epsilon_1$$

$$Y_2 = \eta_2 + \epsilon_2$$

where

- 1 $\eta_2 = \alpha + \beta\eta_1$
- 2 $\eta_1 \perp (\epsilon_1, \epsilon_2)$
- 3 (ϵ_1, ϵ_2) is bivariate normal with mean $(0, 0)$ and covariance matrix Σ
- 4 Y_1 and Y_2 are observable, but η_1 and η_2 are unobservable

A classic result: β is identifiable iff (η_1, η_2) is not bivariate normal.

- ① Aim is to distinguish among endogenous effects, exogenous (contextual) effects, and correlated effects
- ② Random sample (y, z, x, u) but only observe (y, x, z) ; y scalar outcome, x attributes characterizing an individual's reference group, (z, u) attributes that directly affect y
- ③ Model

$$y = \alpha + \beta \mathbb{E}(y|x) + \mathbb{E}(z|x)'\gamma + z'\eta + u$$

where $\mathbb{E}(u|x, z) = x'\delta$ and $(\alpha, \beta, \gamma, \delta, \eta)$ is parameter of interest.

- ④ Note that

$$\mathbb{E}(y|x, z) = \alpha + \beta \mathbb{E}(y|x) + \mathbb{E}(z|x)'\gamma + z'\eta + x'\delta$$

5 Find the social equilibrium:

$$\mathbb{E}(y|x) = \frac{\alpha}{1-\beta} + \mathbb{E}(z|x)' \left(\frac{\gamma + \eta}{1-\beta} \right) + x' \left(\frac{\delta}{1-\beta} \right)$$

6 But a reduced form model can be written as

$$\mathbb{E}(y|x, z) = \frac{\alpha}{1-\beta} + \mathbb{E}(z|x)' \left(\frac{\gamma + \beta\eta}{1-\beta} \right) + x' \left(\frac{\delta}{1-\beta} \right) + z'\eta$$

7 What parameters are identified?
8 When will the ability to detect a “social effect” break down?
9 What happens if $\delta = \gamma = 0$?

Regressions with interval data I

- ① Random sample (y, x, v, v_0, v_1) ; Observe (y, x, v_0, v_1) only;
Assume that $v_0 \leq v \leq v_1$ and all variables are scalar except for x .
- ② What can we learn about $\mathbb{E}(v|x)$ and $\mathbb{E}(y|x, v)$?
- ③ Make the following assumptions:
 - I (Interval) $\Pr(v_0 \leq v \leq v_1) = 1$.
 - M (Monotonicity) $\mathbb{E}(y|x, v)$ exists and is weakly increasing in v .
 - MI (Mean independence) $\mathbb{E}(y|x, v, v_0, v_1) = \mathbb{E}(y|x, v)$
- ④ Under assumption I,

$$\mathbb{E}(v_0|x) \leq \mathbb{E}(v|x) \leq \mathbb{E}(v_1|x)$$

- ⑤ Under assumption IMMI,

$$\sup_{v_1 \leq V} \mathbb{E}(y|x, v_0, v_1) \leq \mathbb{E}(y|x, v = V) \leq \inf_{v_0 \geq V} \mathbb{E}(y|x, v_0, v_1).$$

Regressions with interval data II

- ⑥ Let $\mathbb{E}(y|x, v) = \Pr(y = 1|x, v) = \Pr(x\beta + \delta v + \epsilon > 0|x, v)$.
- ⑦ Make additional assumptions for semiparametric identification:

SBR-1 For $\alpha \in (0, 1)$, $\Pr(\epsilon \leq 0|x, v) = \alpha$.

SBR-2 $\epsilon \perp (v_0, v_1)|(x, v)$

SBR-3 $\delta > 0$

- ⑧ Let Assumption I and Assumptions SBR-1 to SBR-3 hold. Let $b \in \mathbb{R}^K$. Define

$$T(b) = \{(x, v_0, v_1) : xb + v_1 \leq 0 < x\beta + v_0\} \\ \cup \{(x, v_0, v_1) : x\beta + v_1 \leq 0 < xb + v_0\}.$$

The β is identified relative to b iff $\Pr(T(b)) > 0$.

Regressions with interval data III

9 Let $B^* = \{b \in \mathbb{R}^K : \Pr(T(b)) = 0\}$. Assume that

- There exists no proper linear subspace of \mathbb{R}^K having probability one under $F(x)$.
- $\Pr(a_0 \leq v_0 \leq v_1 \leq a_1 | x) > 0$ for all $(a_0, a_1) \in \mathbb{R}^2$ such that $a_0 < a_1$, a.e. x .

Then $B^* = \{\beta\}$.

	Logit ML without Imputations (Table IV)		Logit MMD	MMS
	Point Estimate (Confidence Region)	Interval Estimate (Confidence Region)	Interval Estimate (Confidence Region)	Interval Estimate (Confidence Region)
Wealth	1.47 (1.05, 1.89)	[1.21, 1.23] (.89, 1.62)	[1.67, 1.68] (.27, 4.6)	
Age	.041 (.026, .056)	[.0412, .042] (.0352, .053)	[.044, .050] (.014, .081)	
Schooling	.053 (.031, .076)	[.033, .034] (.017, .058)	[.019, .024] (.003, .054)	
Body Mass	.064 (.05, .078)	[.067, .0671] (.055, .0785)	[.066, .067] (.029, .095)	
Constant	-4.17 (-5.26, -3.09)	[-4.28, -3.96] (-5.58, -2.86)		-4

① Consider the model

$$Y_1 = 1(\beta_1 + u_1 > 0)$$

$$Y_2 = 1(\beta_2 + \delta Y_1 + u_2 > 0)$$

② (u_1, u_2) is iid bivariate normal with mean $(0, 0)$,
 $\text{var}(u_1) = \text{var}(u_2) = 1$, and $\text{cov}(u_1, u_2) = \rho \in (-1, 1)$

③ (Y_1, Y_2) is observable.

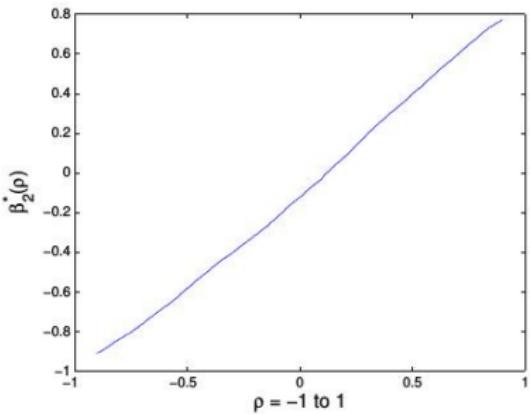
④ What can be identified in this case?

⑤ What if we have

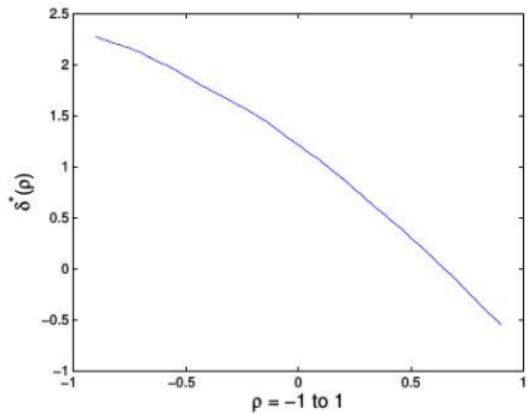
$$Y_1 = 1(\beta_{11} + \beta_{12}x + u_1 > 0)$$

$$Y_2 = 1(\beta_{21} + \beta_{22}x + \delta Y_1 + u_2 > 0)$$

Bivariate probit II

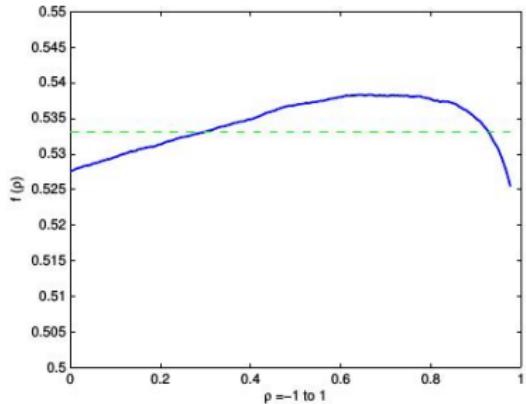


(a) (ρ, β_2) region

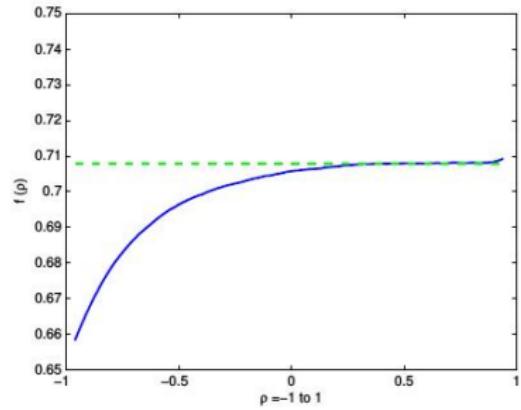


(b) (ρ, δ) region

Bivariate probit III



(a) $(\rho, f(\rho))$ region, $\beta_{21} = -0.4$, $\rho_0 = -0.3$



(b) (ρ, δ) region, $\beta_{21} = 0.4$, $\rho_0 = 0.5$

Simultaneous equations without exclusion restrictions

① Consider the following demand-supply system:

$$Q_t = \alpha + \beta P_t + \epsilon_t$$

$$Q_t = \gamma + \theta P_t + u_t$$

② Assume (ϵ_t, u_t) is iid bivariate normal with zero means, variances σ_ϵ^2 and σ_u^2 , and zero covariance.

③ As a consequence,

$$\mathbb{E}(P_t, Q_t) = (\alpha - \gamma, \alpha\theta - \gamma\beta)/(\theta - \beta)$$

$$\text{Var}(P_t, Q_t) = \begin{pmatrix} \sigma_\epsilon^2 + \sigma_u^2 & \theta\sigma_\epsilon^2 + \beta\sigma_u^2 \\ \theta\sigma_\epsilon^2 + \beta\sigma_u^2 & \theta^2\sigma_\epsilon^2 + \beta^2\sigma_u^2 \end{pmatrix} (\theta - \beta)^{-2}$$

④ Is there any information in these moments that can help in identifying all the parameters of the model?