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Recap

@ Defining identification — What can learned about some
parameter from observables?

® Ingredients — How were the data collected? How were the
data generated?

© A lot of examples showing restrictions that are needed to
obtain identification — mostly rank-type conditions or
subject-matter considerations

O The by-products of identification arguments — give an
understanding of identification failure; understand the extent
of subject-matter knowledge that is required; which
assumptions matter and which don't; a starting point to
construct estimators

® We now continue with more examples and move to more
general settings.



The search ain't over |

® (MA processes) Let X; = j1+ boer + bi€r—1 + ... + bper—p.
Assume for the moment that e; ~ iid N(0,02). We observe
Xt but not the €'s. Can we identify the b's and u? Take the
case where p = 1.

@® (Simultaneous equations) Let

Yi = BYa+vZ+ea
Yo = Y1+ e

Suppose E(e1Z) = E(e2Z) = 0. Can we identify 6?7 How
about 37



The search ain't over Il

© (Panel binary choice) Suppose (Y1, Y2, Y3,«) is a random
vector drawn independently such that

Pr(vi =1la) = pi(a)
Pr(Ya=1[a, Y1) = Fla+9Y1)
Pr(Y3:1\a, Yl,Yz) = F(Oé+’YY2)

where p; and F are both unknown functions with range in
[0,1]. In addition, F is strictly increasing.



The search ain't over Il
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FIGURE 1.—Identified region for vy as a function of its true value.



The search ain't over IV

©® (Dynamic panel data) Arellano and Bond (1991) proposed
linear moment conditions of the form

Elyis(Ayir — @Ay s—1)] =0, s=0,...,t—=2;t=2,..., T,

to identify ag in the dynamic panel data model

Yit = agYit—1 + Ci + vjr under the following assumptions:
]E(V,'t) =0,t=1,...,T

E(V;ty,'o) = 0, t= 1, ey T

E(V,'tC,'):O, t=1,...,T

E(visvi) =0, s=1,...,t—-1;t=1,...,T

When will these linear moment conditions fail to identify ag?

O (Dynamic panel data) What if one uses Ahn-Schmidt
quadratic moment conditions?

El(yit — yi,7-10)(Ayit — aAyj 1) =0, t =2,..., T



Potscher and Prucha’s (1997) Lemma 3.1

Let R,: Qx B— R and R, : B — R such that a.s.

sup |Ra(w, 8) — Rn(B)] — 0 as n — oco.
B

Let 3, be an identifiably unique sequence of minimizers of R,(3),
then for any sequence 3, such that eventually

Ro(w, Bn) = inf Ro(w, )

holds, we have pB(E,Bn) — 0 as. as n— oo.



Remarks

® If R, does not depend on n and the parameter space B is
compact, then identifiable uniqueness is equivalent to the
existence of a unique minimizer of R.

® This only happens under correct specification.
©® Under misspecification, we might have a set of minimizers.

O A reparametrization may be possible so that the lack of
identification disappears.

@ See Section 4.6 of Potscher and Prucha (1997) for more
discussion of the identification conditions under
misspecification.



|dentifiability and consistency

® Observe that if there exists a consistent estimator for a
parameter 0, then the parameter is identifiable.

@® Gabrielsen (1978, JoE) gives a counterexample to show that
the converse is not true.

© Consider the model where Y; = Bp' +¢;, i =1...,n. Assume
that p is known with p < 1, ¢; ~iid N(0,1) and 5 > 0.

O Note that [ is identifiable from the first moment of Y;.

@® Form the ML estimator for S and show that it is not
consistent.



A different type of argument: Measurement error model

Consider the model:

Y1 = m+ea
Yo = m+te

where
@ =a+pBm
® 1 L (e1,€2)

© (€1, €2) is bivariate normal with mean (0,0) and covariance
matrix -

® Y1 and Y5, are observable, but n; and 7, are unobservable

A classic result: 3 is identifiable iff (11, 72) is not bivariate normal.



Endogenous social effects |

@ Aim is to distinguish among endogenous effects, exogenous
(contextual) effects, and correlated effects

® Random sample (y, z, x, u) but only observe (y, x, z); y scalar
outcome, x attributes characterizing an individual’s reference
group, (z, u) attributes that directly affect y
©® Model
y = a+ BE(y[x) + E(z|x)'y + 2'n + u
where E(u|x,z) = x'6 and («, 3,7, 0,n) is parameter of
interest.

O Note that

E(y|x,z) = a + BE(y|x) + E(z|x)'y 4+ z'n + x'0



Endogenous social effects Il

® Find the social equilibrium:

E(y[x) = % + E(z|x) ('IY_JFZ) Ly <1_55>

@® But a reduced form model can be written as
E(y|x,z) = % + E(z|x)’ <’Y1t55?7) + X (1_56) + 72/

@ What parameters are identified?
® When will the ability to detect a “social effect” break down?
© What happens if 6 =~ =07




Regressions with interval data |

® Random sample (y, x, v, vp, v1); Observe (y, x, vo, v1) only;
Assume that vy < v < v; and all variables are scalar except
for x.
® What can we learn about E(v|x) and E(y|x, v)?
©® Make the following assumptions:
I (Interval) Pr(vo < v <wv)=1.
M (Monotonicity) E(y|x, v) exists and is weakly increasing in v.
Ml (Mean independence) E(y|x, v, vo, vi) = E(y|x, v)

® Under assumption |,
E(vo|x) < E(v|x) < E(v1|x)
® Under assumption IMMI,

sup E(y|x, v, vi) < E(y|x,v = V) < inf E(y|x, v, v1).
i<V >V



Regressions with interval data |l

@ Let E(y|x,v) = Pr(y = 1|x,v) = Pr(x8 + v + € > 0|x, v).

@ Make additional assumptions for semiparametric
identification:

SBR-1 For aw € (0,1), Pr(e <0Jx,v) = .
SBR-2 € L (vo,v1)|(x,V)
SBR-3 § >0

® Let Assumption | and Assumptions SBR-1 to SBR-3 hold. Let
b € RX. Define

T(b) ={(x,vo,v1): xb+wv1 <0< xB+ v}
U{(x,v0,v1) : xB+v1 <0< xb+ w}.

The § is identified relative to b iff Pr(T(b)) > 0.



Regressions with interval data lll

O Let B* = {bc RX: Pr(T(b)) =0}. Assume that
e There exists no proper linear subspace of R having
probability one under F(x).
e Pr(ap < vp < v; < aylx) >0 for all (ag, a1) € R? such that
ap < ai, a.e. X.

Then B* = {j}.
Logit ML without
Imputations (Table IV) Logit MMD MMS
Point Estimate Interval Estimate Interval Estimate
(Confidence Region) (Confidence Region) (Confidence Region)
Wealth 1.47 [1.21,1.23] [1.67,1.68]
(1.05,1.89) (:89,1.62) (27,4.6)
Age 041 [.0412, .042) [.044, .050]
(.026, .056) (.0352,.053) (.014,.081)
Schooling 053 [.033,.034] [.019, .024]
(.031,.076) (.017, .058) (.003,.054)
Body Mass 064 [.067, .0671] [.066,.067]
(.05,.078) (.055, .0785) (.029,.095)
Constant 417 [~4.28, —3.96] -4

(=5.26,-3.09) (—5.58, —2.86)




Bivariate probit |

@ Consider the model

Y. = 1(B1+u1 >0)
Y, = 1(52+5Y1+U2>0)

@® (u1, up) is iid bivariate normal with mean (0,0),
var(uy) = var(uz) =1, and cov(ur, o) = p € (—1,1)

® (Y1, Y2) is observable.

® What can be identified in this case?

©® What if we have

Yi = 1(B11 + Piax + v > 0)
Yo = 1(Bo1 + Paox+ Y1+ ux > 0)
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Bivariate probit Ill
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Simultaneous equations without exclusion restrictions

@ Consider the following demand-supply system:

Qe = a+pfPi+e
Qe = 7+0P:+u

@® Assume (€, uy) is iid bivariate normal with zero means,
variances o and o2, and zero covariance.

© As a consequence,

E(Pe, Q) = (a—7v,00 —~p)/(0 - B)

02 + o2 002 + Bo? _
Var(P:, Qr) = <902+502 9202+5202> (CEe)) 2

O Is there any information in these moments that can help in
identifying all the parameters of the model?



