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Recap

@ Sources of identification failure
@® Links among instrumental variables, panel data, and
simultaneous equations

©® Even in parametric settings, partial identification can be an
outcome.

O ldentification can be possible through functional form
restrictions and nonlinearity.

® Binary choice models are tough to crack.

® More examples today: Which assumptions are useful? Talking

about which assumptions drive identification may be useful in
improving conversations about applied work.



On normalizations

@ In semiparametric and nonparametric settings, normalizations
are typically required.

® Consider a binary choice model
E(y|x) = Pr(y = 1|x) = Pr(a + x + € > 0|x).
©® Note that

Pr(y =1|x) = Pr(e> —a— xf8|x)

e—E(e)  —a—xp—E(e)
Pr < var(¢€) ~ var(e)
= Pr(e¢" > —a* — x8%|x)

)

@ In parametric binary choice models, typically impose E(¢) = 0
and var(e) = 1.

@ In semiparametric models, impose a = 0 and ||5|| = 1. Or
impose zero mean and one of the coefficients in § to be equal
to 1.



Regressions with interval data |

® Let E(y|x,v) =Pr(y = 1|x,v) = Pr(x5 + dv + € > 0|x, v).

® Make additional assumptions for semiparametric
identification:

SBR-1 For aw € (0,1), Pr(e <0|x,v) = .

SBR-2 € L (vo,v1)|(x, V)

SBR-3 § >0

©® Set § = 1 as normalization.

O Let Assumption | and Assumptions SBR-1 to SBR-3 hold. Let
b € RX. Define

T(b) ={(x,v0,v1): xb+wv1 <0< xB+ v}
U{(x; v, v1) : xB+ w1 <0< xb+ w}.

Then § is identified relative to b iff Pr(T(b)) > 0.



Regressions with interval data |l

@ (Special case) Suppose vy = vy. Let Assumption | and
Assumptions SBR-1 to SBR-3 hold. Let b € RX. Define

T(b)={(x,v): xb+v <0< xB+v}
U{(x,v): xB+v<0<xb+ v}

Then § is identified relative to b iff Pr(T(b)) > 0.
@ Let B* = {bc RX: Pr(T(b)) =0}. Assume that
e There exists no proper linear subspace of R having
probability one under F(x).
e Pr(ap < vp < v; < aylx) >0 for all (ag, a1) € R? such that
ap < ai, a.e. X.

Then B* = {j}.

@ (Special case) Change to "Pr(ag < v < ap|x) > 0 for all
(ag, a1) € R? such that ag < a1, a.e. x. "



Revisiting Manski and Tamer

® Quantile independence is needed. Mean independence is not
enough to guarantee identification. But, ...

® Consider the same binary choice model where
y =1(a+ v+ € >0). As a consequence,

E(y|v) =Pr(y =1|v) =Pr(a+ v +€e>0]v)
® Assume € L v and E(¢) = 0. Then,
E(ylv) =Pr(y =1lv) =Prla+v+e>0Jv) = F_q_(v)

O As a result,

- / VaEng) dv = — / vaF‘g;e(") dv = —E(~a—e) = a



Special regressor methods and irregular identification

We now show that
E y —1(v >0) W
fu(v)

Note that

() - ()
. (E(y|v)f—(1§v > 0))
_ /[E(y|v) ~1(v > 0)] dv

= v[E(y|v) — 1(v > 0)] — / vaEg\//’V) dv

= Vv[F_a—e(v)—1(v>0)] +a

= «




Bivariate probit |

® Consider the model

Yi = 1(B1+u1>0)
Y, = 1(,32+(5Y1—|—u2>0)

@® (u1, up) is iid bivariate normal with mean (0,0),
var(uy) = var(up) =1, and cov(u, up) = p € (—1,1)

® (Y1, Y2) is observable.

® What can be identified in this case?

®@ What if we have

Y1 = 1(B11 + Brax + ug > 0)
Yo = 1(B21 + Paox+ Y1+ u2 > 0)

where (u1, u2) L x.
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Basic setup

e Consider the following model where

yi =aiys +e1,y1 =1(yf > 0)
¥ = aoy1 +€2,y2 = 1(y; > 0)

e Note that there are four possible observed outcomes.
].) if €1 > —Q1,€2 > —0
,0) if61 > 0,62 < —as
1)
0)

ifer < —aj,e0 >0
ife1 <0, <0
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Visualizing a; > 0 and ap > 0
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Visualizing a; < 0 and ap < 0




Tamer's (2003) solution

Consider the model where

yi =x11+ y201 + €1
Y5 = X032+ y100 + €

and y1 = 1(y; > 0) and y> =1(y; > 0).

Assume that we have random sampling, (e1,€2) L (x1,x2), (€1,€2)
has a known continuous distribution with mean 0 and covariance
matrix €2, and that a3 < 0, < 0.

If, in addition, we assume that for i = 1 or i = 2, there exists a
regressor x;x with Bj % 0 such that xj & x3_; and such that the
distribution of Xjk|(X1k, .., X1 k—1, X1 k+1, - - - , X1k ) has an
everywhere positive Lebesgue density. Then (51, 82, a1, o) are
identified if x; and x> have full rank.



Binary choice models with binary endogenous regressors |

@ Suppose we have a binary choice model (which can be
rewritten as a nonseparable model):

0 if U< p(X)

Y =hx,U)= {1 it p(X)<1

where U ~ U(0,1), X € {x1,x2} is endogenous, and Z is
available as an instrumental variable, i.e. U 1 Z.

® We want to identify the function p(X). Let v = p(X1) and
Y2 = p(Xa2).

® If X L U, then we have point identification.

O Can an |V approach identify 1, 727



Binary choice models with binary endogenous regressors Il
©® Note that

11 = Pr(U<m)
— PHU<2)
= Pr(U<m|X =x1,2)Pr(X = x1|2)
+Pr(U < 7|X = x2, Z) Pr(X = x2|2)
= Pr(Y=0|X=x1,2Z)Pr(X =x1|2Z)
+Pr(U < m|X =x2,Z)Pr(X = x|2)

€[0,1]

@ Similarly,

Y2 = Pr(U< X =x,Z)Pr(X =x|2)
€[o,1]
+Pr(Y =0|X = x2, Z) Pr(X = x| 2)




Binary choice models with binary endogenous regressors Il

@ Bounds for both v; and 7, are now available.

® These bounds depend on Z. More importantly, they intersect
each other.

© Everything so far is completely nonparametric. What if we
include a shape restriction? Suppose 1 < 2. Bounds can be
tightened.

@ Note

1 = Pr(Y =0X=x1,2)Pr(X =xi|2)
+Pr(U < m|X =x2,Z)Pr(X = x|2)
Pr(Y =0|X = x1, Z) Pr(X = x1|2)
+Pr(U < »|X = x2, Z) Pr(X = x2|2)
= Pr(Y =0|X =x1,2)Pr(X = x1|2Z)
+Pr(Y =0|X = x2, Z) Pr(X = x2|2)

IN



Binary choice models with binary endogenous regressors 1V
® Similarly,
Y2 = PI’(U < ’}/2|X = X1,Z) Pr(X = Xl‘Z)
+Pr(Y = 0[X = x, 2) Pr(X = x|2)
Pr(Y = 0|X = x1, Z) Pr(X = x1|2)
FPHY = 0[X = x2, Z) Pr(X = x|2)

Y

® What if we impose a parametric restriction? Suppose

1

X) =
P(X) 1+ exp(mo + mX)

® Note that

1_
7T0+7T1X1:|0g< 71)
g

]__
7T0+7T1X2:|0g< 72)
72




Final remarks

@ Hope you learned a lot from this short course.

® | decided to emphasize examples and arguments rather than
dig deep into one particular topic. | also wanted to emphasize
commonalities in the examples.

© There are many things still do study — inference, computation,
and big data concerns.

O The need for privacy will definitely change the nature of data
collection assumptions.

@ The need for generating some “certainty” in the effects of
policies will also change the nature of data generation
assumptions.

® Perhaps we should also search for the minimal set of
assumptions for identification.

@ Finally, links between model misspecification and partial
identification may have to be explored.



