

Topics in Econometrics: Identification

Presented by Andrew Adrian Yu Pua

Universität Passau

April 7, 2016

- ① Sources of identification failure
- ② Links among instrumental variables, panel data, and simultaneous equations
- ③ Even in parametric settings, partial identification can be an outcome.
- ④ Identification can be possible through functional form restrictions and nonlinearity.
- ⑤ Binary choice models are tough to crack.
- ⑥ More examples today: Which assumptions are useful? Talking about which assumptions drive identification may be useful in improving conversations about applied work.

- ① In semiparametric and nonparametric settings, normalizations are typically required.
- ② Consider a binary choice model

$$\mathbb{E}(y|x) = \Pr(y = 1|x) = \Pr(\alpha + x\beta + \epsilon > 0|x).$$
- ③ Note that

$$\begin{aligned}
 \Pr(y = 1|x) &= \Pr(\epsilon > -\alpha - x\beta|x) \\
 &= \Pr\left(\frac{\epsilon - \mathbb{E}(\epsilon)}{\text{var}(\epsilon)} > \frac{-\alpha - x\beta - \mathbb{E}(\epsilon)}{\text{var}(\epsilon)} \middle| x\right) \\
 &= \Pr(\epsilon^* > -\alpha^* - x\beta^*|x)
 \end{aligned}$$

- ④ In parametric binary choice models, typically impose $\mathbb{E}(\epsilon) = 0$ and $\text{var}(\epsilon) = 1$.
- ⑤ In semiparametric models, impose $\alpha = 0$ and $\|\beta\| = 1$. Or impose zero mean and one of the coefficients in β to be equal to 1.

- ① Let $\mathbb{E}(y|x, v) = \Pr(y = 1|x, v) = \Pr(x\beta + \delta v + \epsilon > 0|x, v)$.
- ② Make additional assumptions for semiparametric identification:

SBR-1 For $\alpha \in (0, 1)$, $\Pr(\epsilon \leq 0|x, v) = \alpha$.

SBR-2 $\epsilon \perp (v_0, v_1)|(x, v)$

SBR-3 $\delta > 0$

- ③ Set $\delta = 1$ as normalization.
- ④ Let Assumption I and Assumptions SBR-1 to SBR-3 hold. Let $b \in \mathbb{R}^K$. Define

$$\begin{aligned} T(b) = & \{(x, v_0, v_1) : xb + v_1 \leq 0 < x\beta + v_0\} \\ & \cup \{(x, v_0, v_1) : x\beta + v_1 \leq 0 < xb + v_0\}. \end{aligned}$$

Then β is identified relative to b iff $\Pr(T(b)) > 0$.

Regressions with interval data II

5 (Special case) Suppose $v_0 = v_1$. Let Assumption I and Assumptions SBR-1 to SBR-3 hold. Let $b \in \mathbb{R}^K$. Define

$$\begin{aligned} T(b) = & \{(x, v) : xb + v \leq 0 < x\beta + v\} \\ & \cup \{(x, v) : x\beta + v \leq 0 < xb + v\}. \end{aligned}$$

Then β is identified relative to b iff $\Pr(T(b)) > 0$.

6 Let $B^* = \{b \in \mathbb{R}^K : \Pr(T(b)) = 0\}$. Assume that

- There exists no proper linear subspace of \mathbb{R}^K having probability one under $F(x)$.
- $\Pr(a_0 \leq v_0 \leq v_1 \leq a_1 | x) > 0$ for all $(a_0, a_1) \in \mathbb{R}^2$ such that $a_0 < a_1$, a.e. x .

Then $B^* = \{\beta\}$.

7 (Special case) Change to “ $\Pr(a_0 \leq v \leq a_1 | x) > 0$ for all $(a_0, a_1) \in \mathbb{R}^2$ such that $a_0 < a_1$, a.e. x .”

- ① Quantile independence is needed. Mean independence is not enough to guarantee identification. But, ...
- ② Consider the same binary choice model where $y = 1(\alpha + v + \epsilon \geq 0)$. As a consequence,

$$E(y|v) = \Pr(y = 1|v) = \Pr(\alpha + v + \epsilon > 0|v)$$

- ③ Assume $\epsilon \perp v$ and $\mathbb{E}(\epsilon) = 0$. Then,

$$E(y|v) = \Pr(y = 1|v) = \Pr(\alpha + v + \epsilon > 0|v) = F_{-\alpha-\epsilon}(v)$$

- ④ As a result,

$$-\int v \frac{\partial E(y|v)}{\partial v} dv = -\int v \frac{\partial F_{-\alpha-\epsilon}(v)}{\partial v} dv = -\mathbb{E}(-\alpha-\epsilon) = \alpha$$

Special regressor methods and irregular identification

We now show that

$$\mathbb{E} \left(\frac{y - 1(v > 0)}{f_v(v)} \right) = \alpha.$$

Note that

$$\begin{aligned} \mathbb{E} \left(\frac{y - 1(v > 0)}{f_v(v)} \right) &= \mathbb{E} \left(\mathbb{E} \left(\frac{y - 1(v > 0)}{f_v(v)} \middle| v \right) \right) \\ &= \mathbb{E} \left(\frac{\mathbb{E}(y|v) - 1(v > 0)}{f_v(v)} \right) \\ &= \int [\mathbb{E}(y|v) - 1(v > 0)] \, dv \\ &= v[\mathbb{E}(y|v) - 1(v > 0)] - \int v \frac{\partial \mathbb{E}(y|v)}{\partial v} \, dv \\ &= v[F_{-\alpha-\epsilon}(v) - 1(v > 0)] + \alpha \\ &= \alpha \end{aligned}$$

① Consider the model

$$Y_1 = 1(\beta_1 + u_1 > 0)$$

$$Y_2 = 1(\beta_2 + \delta Y_1 + u_2 > 0)$$

② (u_1, u_2) is iid bivariate normal with mean $(0, 0)$,
 $\text{var}(u_1) = \text{var}(u_2) = 1$, and $\text{cov}(u_1, u_2) = \rho \in (-1, 1)$

③ (Y_1, Y_2) is observable.

④ What can be identified in this case?

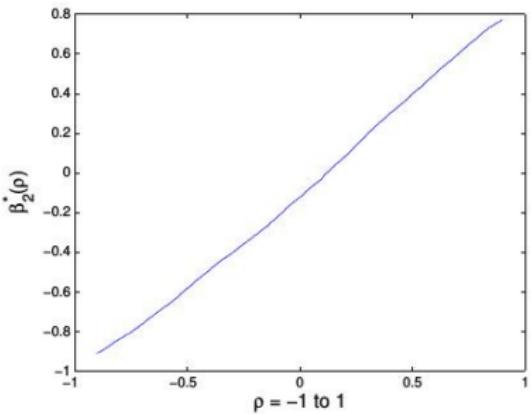
⑤ What if we have

$$Y_1 = 1(\beta_{11} + \beta_{12}x + u_1 > 0)$$

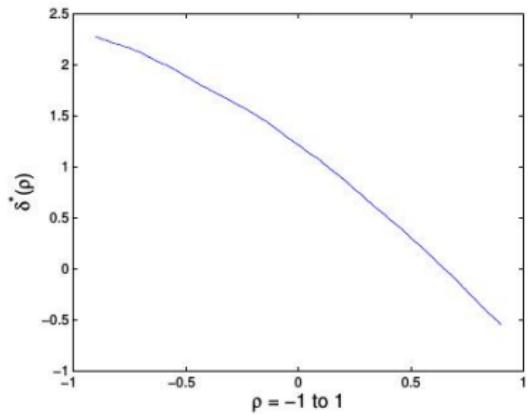
$$Y_2 = 1(\beta_{21} + \beta_{22}x + \delta Y_1 + u_2 > 0)$$

where $(u_1, u_2) \perp x$.

Bivariate probit II

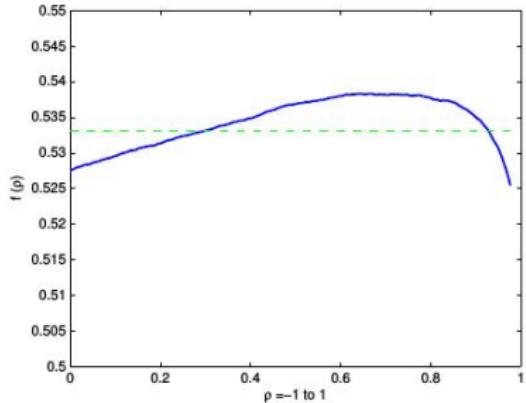


(a) (ρ, β_2) region

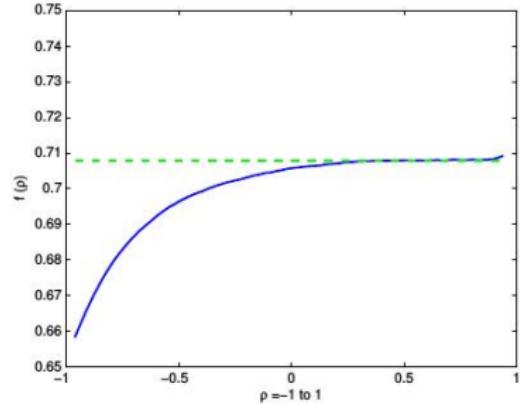


(b) (ρ, δ) region

Bivariate probit III



(a) $(\rho, f(\rho))$ region, $\beta_{21} = -0.4$, $\rho_0 = -0.3$



(b) (ρ, δ) region, $\beta_{21} = 0.4$, $\rho_0 = 0.5$

- Consider the following model where

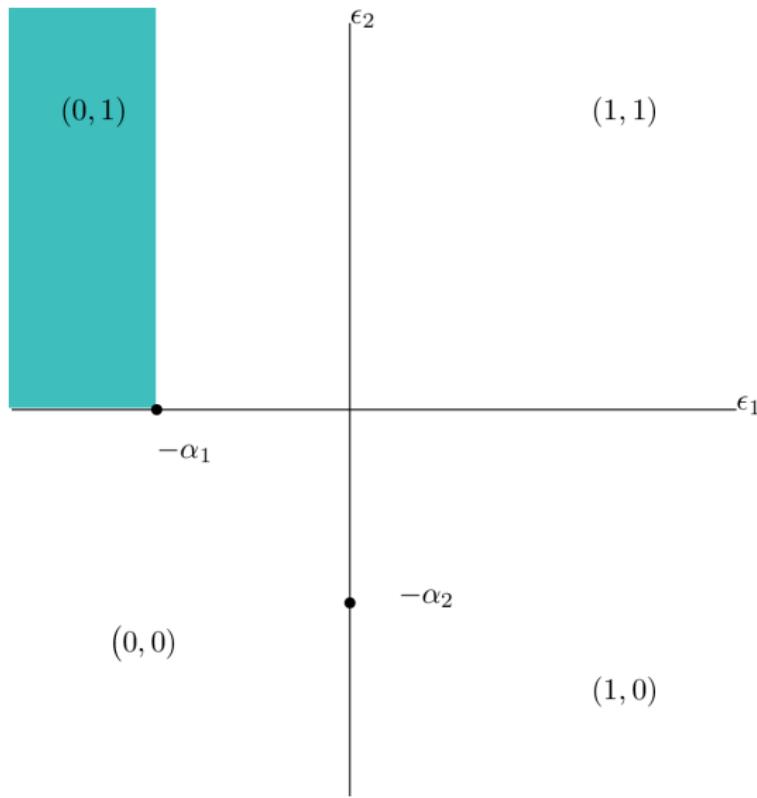
$$y_1^* = \alpha_1 y_2 + \epsilon_1, y_1 = \mathbf{1}(y_1^* > 0)$$

$$y_2^* = \alpha_2 y_1 + \epsilon_2, y_2 = \mathbf{1}(y_2^* > 0)$$

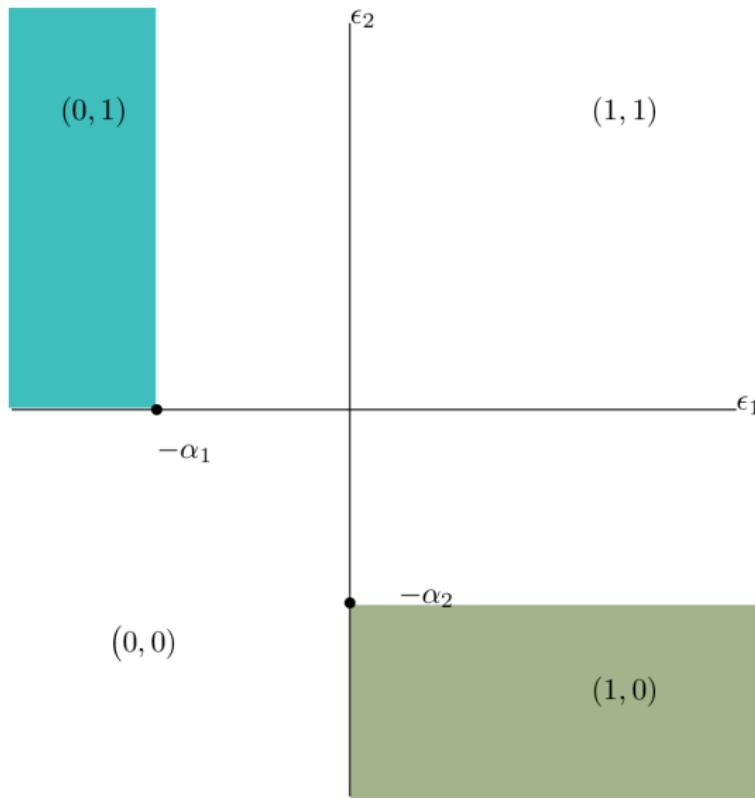
- Note that there are four possible observed outcomes.

$$(y_1, y_2) = \begin{cases} (1, 1) & \text{if } \epsilon_1 > -\alpha_1, \epsilon_2 > -\alpha_2 \\ (1, 0) & \text{if } \epsilon_1 > 0, \epsilon_2 \leq -\alpha_2 \\ (0, 1) & \text{if } \epsilon_1 \leq -\alpha_1, \epsilon_2 > 0 \\ (0, 0) & \text{if } \epsilon_1 \leq 0, \epsilon_2 \leq 0 \end{cases}$$

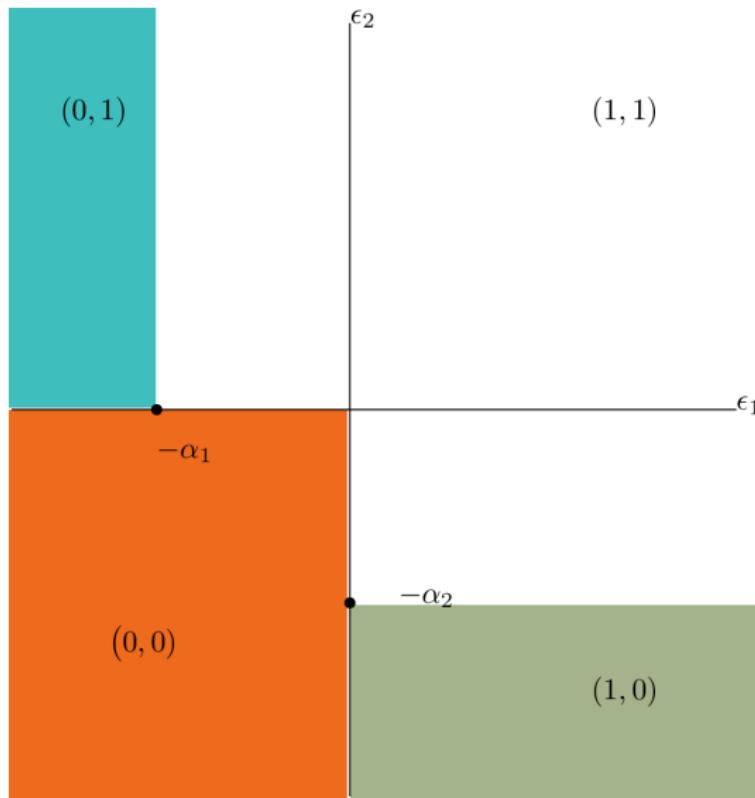
Visualizing $\alpha_1 > 0$ and $\alpha_2 > 0$



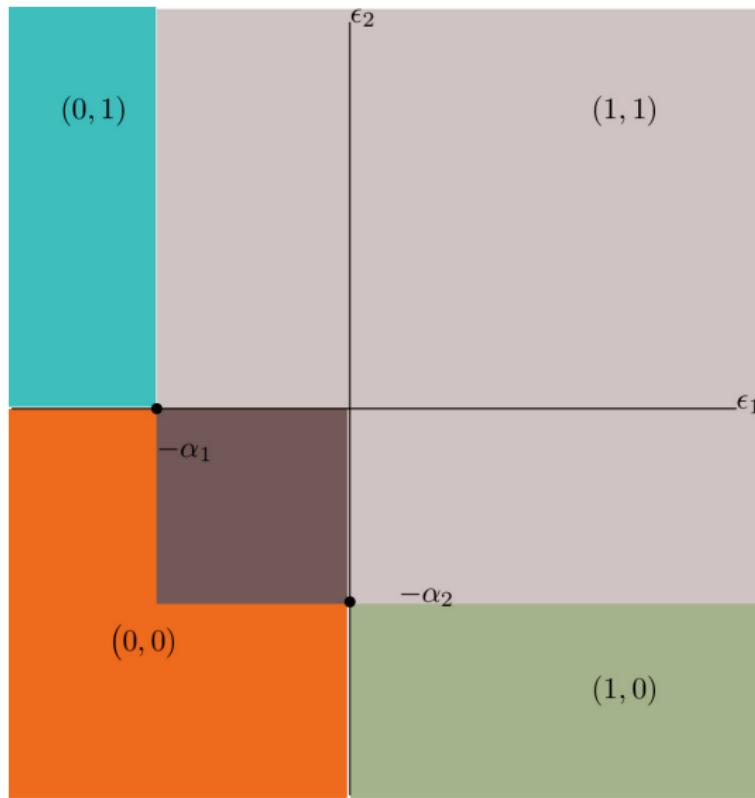
Visualizing $\alpha_1 > 0$ and $\alpha_2 > 0$



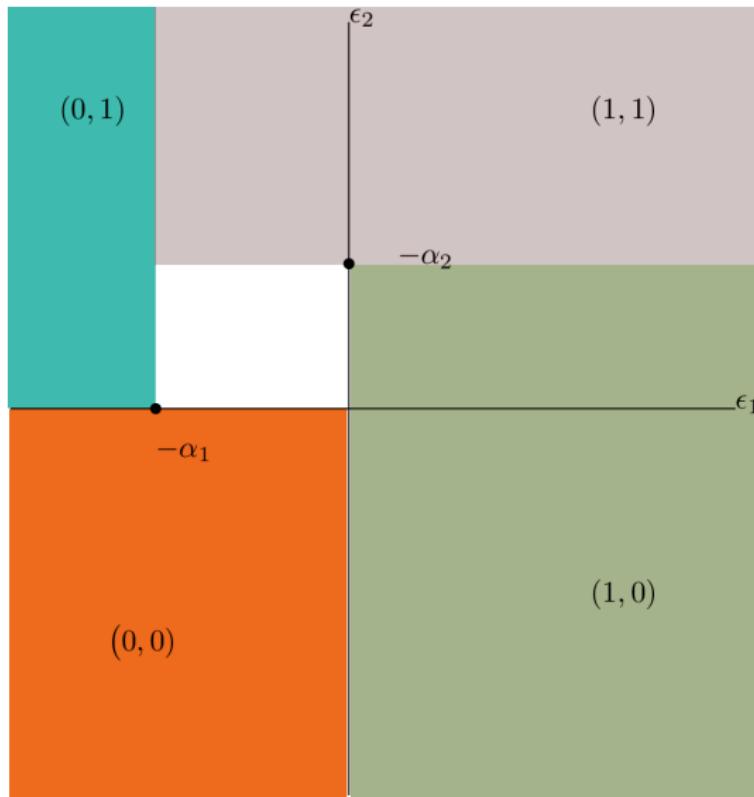
Visualizing $\alpha_1 > 0$ and $\alpha_2 > 0$



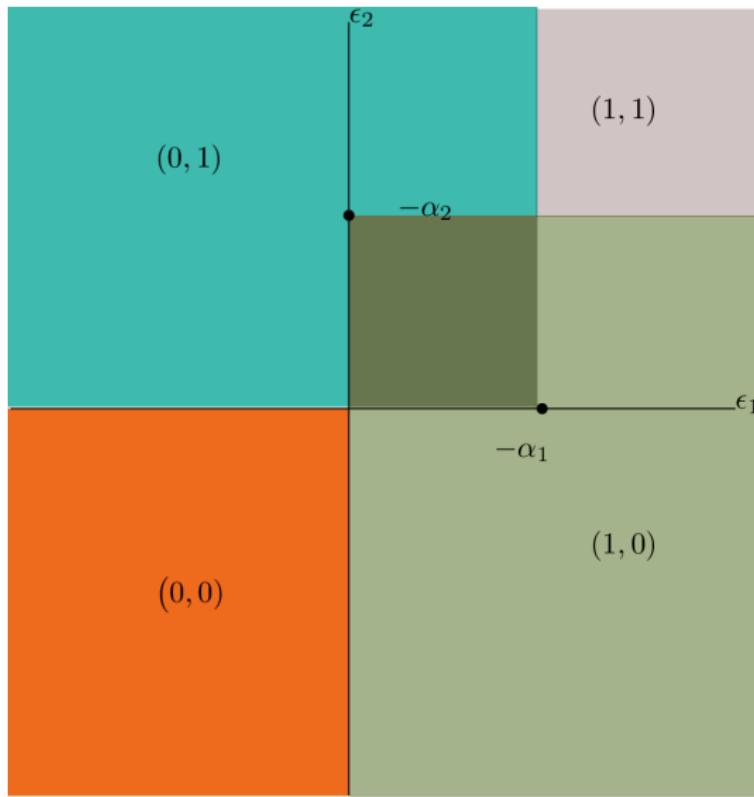
Visualizing $\alpha_1 > 0$ and $\alpha_2 > 0$



Visualizing $\alpha_1 > 0$ and $\alpha_2 < 0$



Visualizing $\alpha_1 < 0$ and $\alpha_2 < 0$



Consider the model where

$$y_1^* = x_1\beta_1 + y_2\alpha_1 + \epsilon_1$$

$$y_2^* = x_2\beta_2 + y_1\alpha_2 + \epsilon_2$$

and $y_1 = 1(y_1^* \geq 0)$ and $y_2 = 1(y_2^* \geq 0)$.

Assume that we have random sampling, $(\epsilon_1, \epsilon_2) \perp (x_1, x_2)$, (ϵ_1, ϵ_2) has a known continuous distribution with mean 0 and covariance matrix Ω , and that $\alpha_1 < 0, \alpha_2 < 0$.

If, in addition, we assume that for $i = 1$ or $i = 2$, there exists a regressor x_{ik} with $\beta_{ik} \neq 0$ such that $x_{ik} \notin x_{3-i}$ and such that the distribution of $x_{ik}|(x_{1k}, \dots, x_{1,k-1}, x_{1,k+1}, \dots, x_{1K})$ has an everywhere positive Lebesgue density. Then $(\beta_1, \beta_2, \alpha_1, \alpha_2)$ are identified if x_1 and x_2 have full rank.

Binary choice models with binary endogenous regressors I

- ① Suppose we have a binary choice model (which can be rewritten as a nonseparable model):

$$Y = h(X, U) = \begin{cases} 0 & \text{if } U \leq p(X) \\ 1 & \text{if } p(X) \leq 1 \end{cases}$$

where $U \sim U(0, 1)$, $X \in \{x_1, x_2\}$ is endogenous, and Z is available as an instrumental variable, i.e. $U \perp Z$.

- ② We want to identify the function $p(X)$. Let $\gamma_1 = p(X_1)$ and $\gamma_2 = p(X_2)$.
- ③ If $X \perp U$, then we have point identification.
- ④ Can an IV approach identify γ_1, γ_2 ?

Binary choice models with binary endogenous regressors II

5 Note that

$$\begin{aligned}\gamma_1 &= \Pr(U \leq \gamma_1) \\ &= \Pr(U \leq \gamma_1 | Z) \\ &= \Pr(U \leq \gamma_1 | X = x_1, Z) \Pr(X = x_1 | Z) \\ &\quad + \Pr(U \leq \gamma_1 | X = x_2, Z) \Pr(X = x_2 | Z) \\ &= \Pr(Y = 0 | X = x_1, Z) \Pr(X = x_1 | Z) \\ &\quad + \underbrace{\Pr(U \leq \gamma_1 | X = x_2, Z)}_{\in [0,1]} \Pr(X = x_2 | Z)\end{aligned}$$

6 Similarly,

$$\begin{aligned}\gamma_2 &= \underbrace{\Pr(U \leq \gamma_2 | X = x_1, Z)}_{\in [0,1]} \Pr(X = x_1 | Z) \\ &\quad + \Pr(Y = 0 | X = x_2, Z) \Pr(X = x_2 | Z)\end{aligned}$$

Binary choice models with binary endogenous regressors III

- ⑦ Bounds for both γ_1 and γ_2 are now available.
- ⑧ These bounds depend on Z . More importantly, they intersect each other.
- ⑨ Everything so far is completely nonparametric. What if we include a shape restriction? Suppose $\gamma_1 \leq \gamma_2$. Bounds can be tightened.
- ⑩ Note

$$\begin{aligned}\gamma_1 &= \Pr(Y = 0|X = x_1, Z) \Pr(X = x_1|Z) \\ &\quad + \Pr(U \leq \gamma_1|X = x_2, Z) \Pr(X = x_2|Z) \\ &\leq \Pr(Y = 0|X = x_1, Z) \Pr(X = x_1|Z) \\ &\quad + \Pr(U \leq \gamma_2|X = x_2, Z) \Pr(X = x_2|Z) \\ &= \Pr(Y = 0|X = x_1, Z) \Pr(X = x_1|Z) \\ &\quad + \Pr(Y = 0|X = x_2, Z) \Pr(X = x_2|Z)\end{aligned}$$

Binary choice models with binary endogenous regressors IV

11 Similarly,

$$\begin{aligned}\gamma_2 &= \Pr(U \leq \gamma_2 | X = x_1, Z) \Pr(X = x_1 | Z) \\ &\quad + \Pr(Y = 0 | X = x_2, Z) \Pr(X = x_2 | Z) \\ &\geq \Pr(Y = 0 | X = x_1, Z) \Pr(X = x_1 | Z) \\ &\quad + \Pr(Y = 0 | X = x_2, Z) \Pr(X = x_2 | Z)\end{aligned}$$

12 What if we impose a parametric restriction? Suppose

$$p(X) = \frac{1}{1 + \exp(\pi_0 + \pi_1 X)}$$

13 Note that

$$\pi_0 + \pi_1 x_1 = \log \left(\frac{1 - \gamma_1}{\gamma_1} \right)$$

$$\pi_0 + \pi_1 x_2 = \log \left(\frac{1 - \gamma_2}{\gamma_2} \right)$$

- ① Hope you learned a lot from this short course.
- ② I decided to emphasize examples and arguments rather than dig deep into one particular topic. I also wanted to emphasize commonalities in the examples.
- ③ There are many things still do study – inference, computation, and big data concerns.
- ④ The need for privacy will definitely change the nature of data collection assumptions.
- ⑤ The need for generating some “certainty” in the effects of policies will also change the nature of data generation assumptions.
- ⑥ Perhaps we should also search for the minimal set of assumptions for identification.
- ⑦ Finally, links between model misspecification and partial identification may have to be explored.