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Recap

1 Sources of identification failure

2 Links among instrumental variables, panel data, and
simultaneous equations

3 Even in parametric settings, partial identification can be an
outcome.

4 Identification can be possible through functional form
restrictions and nonlinearity.

5 Binary choice models are tough to crack.

6 More examples today: Which assumptions are useful? Talking
about which assumptions drive identification may be useful in
improving conversations about applied work.



On normalizations

1 In semiparametric and nonparametric settings, normalizations
are typically required.

2 Consider a binary choice model
E(y |x) = Pr(y = 1|x) = Pr(α + xβ + ε > 0|x).

3 Note that

Pr(y = 1|x) = Pr(ε > −α− xβ|x)

= Pr

(
ε− E(ε)

var(ε)
>
−α− xβ − E(ε)

var(ε)

∣∣∣∣x)
= Pr(ε∗ > −α∗ − xβ∗|x)

4 In parametric binary choice models, typically impose E(ε) = 0
and var(ε) = 1.

5 In semiparametric models, impose α = 0 and ||β|| = 1. Or
impose zero mean and one of the coefficients in β to be equal
to 1.



Regressions with interval data I

1 Let E(y |x , v) = Pr(y = 1|x , v) = Pr(xβ + δv + ε > 0|x , v).

2 Make additional assumptions for semiparametric
identification:

SBR-1 For α ∈ (0, 1), Pr(ε ≤ 0|x , v) = α.
SBR-2 ε ⊥ (v0, v1)|(x , v)
SBR-3 δ > 0

3 Set δ = 1 as normalization.

4 Let Assumption I and Assumptions SBR-1 to SBR-3 hold. Let
b ∈ RK . Define

T (b) = {(x , v0, v1) : xb + v1 ≤ 0 < xβ + v0}
∪{(x , v0, v1) : xβ + v1 ≤ 0 < xb + v0}.

Then β is identified relative to b iff Pr(T (b)) > 0.



Regressions with interval data II

5 (Special case) Suppose v0 = v1. Let Assumption I and
Assumptions SBR-1 to SBR-3 hold. Let b ∈ RK . Define

T (b) = {(x , v) : xb + v ≤ 0 < xβ + v}
∪{(x , v) : xβ + v ≤ 0 < xb + v}.

Then β is identified relative to b iff Pr(T (b)) > 0.

6 Let B∗ = {b ∈ RK : Pr(T (b)) = 0}. Assume that
• There exists no proper linear subspace of RK having

probability one under F (x).
• Pr(a0 ≤ v0 ≤ v1 ≤ a1|x) > 0 for all (a0, a1) ∈ R2 such that

a0 < a1, a.e. x .

Then B∗ = {β}.
7 (Special case) Change to “Pr(a0 ≤ v ≤ a1|x) > 0 for all

(a0, a1) ∈ R2 such that a0 < a1, a.e. x . ”



Revisiting Manski and Tamer

1 Quantile independence is needed. Mean independence is not
enough to guarantee identification. But, ...

2 Consider the same binary choice model where
y = 1(α + v + ε ≥ 0). As a consequence,

E (y |v) = Pr(y = 1|v) = Pr(α + v + ε > 0|v)

3 Assume ε ⊥ v and E(ε) = 0. Then,

E (y |v) = Pr(y = 1|v) = Pr(α + v + ε > 0|v) = F−α−ε(v)

4 As a result,

−
∫

v
∂E (y |v)

∂v
dv = −

∫
v
∂F−α−ε(v)

∂v
dv = −E(−α−ε) = α



Special regressor methods and irregular identification

We now show that

E
(
y − 1(v > 0)

fv (v)

)
= α.

Note that

E
(
y − 1(v > 0)

fv (v)

)
= E

(
E
(
y − 1(v > 0)

fv (v)

∣∣∣∣v))
= E

(
E(y |v)− 1(v > 0)

fv (v)

)
=

∫
[E(y |v)− 1(v > 0)] dv

= v [E(y |v)− 1(v > 0)]−
∫

v
∂E (y |v)

∂v
dv

= v [F−α−ε(v)− 1(v > 0)] + α

= α



Bivariate probit I

1 Consider the model

Y1 = 1(β1 + u1 > 0)

Y2 = 1(β2 + δY1 + u2 > 0)

2 (u1, u2) is iid bivariate normal with mean (0, 0),
var(u1) = var(u2) = 1, and cov(u1, u2) = ρ ∈ (−1, 1)

3 (Y1,Y2) is observable.

4 What can be identified in this case?

5 What if we have

Y1 = 1(β11 + β12x + u1 > 0)

Y2 = 1(β21 + β22x + δY1 + u2 > 0)

where (u1, u2) ⊥ x .



Bivariate probit II



Bivariate probit III



Basic setup

• Consider the following model where

y∗1 = α1y2 + ε1, y1 = 1(y∗1 > 0)

y∗2 = α2y1 + ε2, y2 = 1(y∗2 > 0)

• Note that there are four possible observed outcomes.

(y1, y2) =


(1, 1) if ε1 > −α1, ε2 > −α2

(1, 0) if ε1 > 0, ε2 ≤ −α2

(0, 1) if ε1 ≤ −α1, ε2 > 0

(0, 0) if ε1 ≤ 0, ε2 ≤ 0



Visualizing α1 > 0 and α2 > 0



Visualizing α1 > 0 and α2 > 0



Visualizing α1 > 0 and α2 > 0



Visualizing α1 > 0 and α2 > 0



Visualizing α1 > 0 and α2 < 0



Visualizing α1 < 0 and α2 < 0



Tamer’s (2003) solution

Consider the model where

y∗1 = x1β1 + y2α1 + ε1

y∗2 = x2β2 + y1α2 + ε2

and y1 = 1(y∗1 ≥ 0) and y2 = 1(y∗2 ≥ 0).

Assume that we have random sampling, (ε1, ε2) ⊥ (x1, x2), (ε1, ε2)
has a known continuous distribution with mean 0 and covariance
matrix Ω, and that α1 < 0, α2 < 0.

If, in addition, we assume that for i = 1 or i = 2, there exists a
regressor xik with βik 6= 0 such that xik 6∈ x3−i and such that the
distribution of xik |(x1k , . . . , x1,k−1, x1,k+1, . . . , x1K ) has an
everywhere positive Lebesgue density. Then (β1, β2, α1, α2) are
identified if x1 and x2 have full rank.



Binary choice models with binary endogenous regressors I

1 Suppose we have a binary choice model (which can be
rewritten as a nonseparable model):

Y = h(X ,U) =

{
0 if U ≤ p(X )

1 if p(X ) ≤ 1

where U ∼ U(0, 1), X ∈ {x1, x2} is endogenous, and Z is
available as an instrumental variable, i.e. U ⊥ Z .

2 We want to identify the function p(X ). Let γ1 = p(X1) and
γ2 = p(X2).

3 If X ⊥ U, then we have point identification.

4 Can an IV approach identify γ1, γ2?



Binary choice models with binary endogenous regressors II

5 Note that

γ1 = Pr(U ≤ γ1)

= Pr(U ≤ γ1|Z )

= Pr(U ≤ γ1|X = x1,Z ) Pr(X = x1|Z )

+ Pr(U ≤ γ1|X = x2,Z ) Pr(X = x2|Z )

= Pr(Y = 0|X = x1,Z ) Pr(X = x1|Z )

+ Pr(U ≤ γ1|X = x2,Z )︸ ︷︷ ︸
∈[0,1]

Pr(X = x2|Z )

6 Similarly,

γ2 = Pr(U ≤ γ2|X = x1,Z )︸ ︷︷ ︸
∈[0,1]

Pr(X = x1|Z )

+ Pr(Y = 0|X = x2,Z ) Pr(X = x2|Z )



Binary choice models with binary endogenous regressors III

7 Bounds for both γ1 and γ2 are now available.

8 These bounds depend on Z . More importantly, they intersect
each other.

9 Everything so far is completely nonparametric. What if we
include a shape restriction? Suppose γ1 ≤ γ2. Bounds can be
tightened.

10 Note

γ1 = Pr(Y = 0|X = x1,Z ) Pr(X = x1|Z )

+ Pr(U ≤ γ1|X = x2,Z ) Pr(X = x2|Z )

≤ Pr(Y = 0|X = x1,Z ) Pr(X = x1|Z )

+ Pr(U ≤ γ2|X = x2,Z ) Pr(X = x2|Z )

= Pr(Y = 0|X = x1,Z ) Pr(X = x1|Z )

+ Pr(Y = 0|X = x2,Z ) Pr(X = x2|Z )



Binary choice models with binary endogenous regressors IV

11 Similarly,

γ2 = Pr(U ≤ γ2|X = x1,Z ) Pr(X = x1|Z )

+ Pr(Y = 0|X = x2,Z ) Pr(X = x2|Z )

≥ Pr(Y = 0|X = x1,Z ) Pr(X = x1|Z )

+ Pr(Y = 0|X = x2,Z ) Pr(X = x2|Z )

12 What if we impose a parametric restriction? Suppose

p(X ) =
1

1 + exp(π0 + π1X )

13 Note that

π0 + π1x1 = log

(
1− γ1
γ1

)
π0 + π1x2 = log

(
1− γ2
γ2

)



Final remarks

1 Hope you learned a lot from this short course.

2 I decided to emphasize examples and arguments rather than
dig deep into one particular topic. I also wanted to emphasize
commonalities in the examples.

3 There are many things still do study – inference, computation,
and big data concerns.

4 The need for privacy will definitely change the nature of data
collection assumptions.

5 The need for generating some “certainty” in the effects of
policies will also change the nature of data generation
assumptions.

6 Perhaps we should also search for the minimal set of
assumptions for identification.

7 Finally, links between model misspecification and partial
identification may have to be explored.


