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Abstract

I develop a bias reduction method for the estimators of structural parameters of a

panel data model (whether linear or nonlinear) using a projection argument. A cor-

rected score is calculated by projecting the score vector for the structural parameters

onto the orthogonal complement of a space characterized by incidental parameter fluc-

tuations. Assuming that the individual-specific effect could take on almost any finite

value and that the densities for the data are correctly specified, I show that the asymp-

totic distribution of the structural parameters is normal and centered at zero under the

same set of conditions considered in this literature. Furthermore, the construction of

the projected score extends itself to situations where there are multiple fixed effects.

Numerical experiments show that the finite sample performance of projected scores is

at least as good or better than existing competitors when the number of time periods

is around 3 or 4.
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1 Introduction

Neyman and Scott (1948) show that the method of maximum likelihood may fail to produce

consistent and asymptotically efficient estimators when there are incidental parameters.

Lancaster (2000) documents some of the developments after the publication of their paper.
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Roughly, these developments can be classified into two classes of solutions to the incidental

parameter problem: solutions that exploit the structure of the model and solutions that

involve orthogonal reparametrization. The latter has been explored more fully in Lancaster

(2002) and Woutersen (2003; 2011). Most of the solutions that have been documented

are called fixed-T solutions. If one would choose to use an asymptotic scheme where the

number of cross-sectional units n grow large, leaving the number of time periods T fixed,

then one has to use choose procedures that ensure that the estimating function is both

functionally and stochastically independent of the incidental parameters.

Since incidental parameters in panel data models are represented as time-invariant pa-

rameters that appear in only a finite number of probability distributions, estimating these

parameters induces finite sample bias in the time series dimension. This phenomenon al-

lows us to reconsider the choice of asymptotic scheme. Research by Waterman (1993), Li,

Lindsay, and Waterman (2003), and Hahn and Newey (2004) has paved the way for these

large-T bias corrections. Arellano and Hahn (2007) primarily survey these developments

for static panel data models with strictly exogenous regressors. They also document the

three related ways of constructing these corrections – correcting the objective function, the

moment equation, or the estimator itself. Although one can find consistent estimators of

the common parameters, their asymptotic distributions are incorrectly centered. Under this

asymptotic scheme, the nonzero center can be estimated when both the number of cross-

sectional units and time periods grow at a particular rate (say n/T → c ∈ (0,∞)). As a

result, one can construct an estimator with a correctly centered asymptotic distribution.

In this paper, I adjust the score or some suitably chosen moment function for the com-

mon parameter so that a consistent root of the adjusted score has a correctly centered

asymptotic distribution. Furthermore, there are cases for which the adjustment produces a

fixed-T consistent estimator. The score or some moment function is the most natural object

to adjust because they are the starting points for proofs of consistency and asymptotic nor-

mality under regularity conditions. Depending on how one sees the multiple root problem,

an issue with score-based adjustments is root selection.1 In addition, when the common

parameter is vector-valued, reconstructing a corrected objective function from the adjusted

score or adjusted moment function may no longer be possible. Despite these issues, I discuss

some of the advantages of using this score-based adjustment.

First, the computation of the large-T bias-corrected estimator typically requires the user

to select an integer bandwidth whenever a model with some dynamics is being considered.

This is true even for the case of a model with lagged dependent variables and strictly ex-

ogenous regressors (see for example, Bester and Hansen (2009) and Hahn and Kuersteiner

(2011)) or a static binary choice model with predetermined regressors (see Fernandez-

Val (2009)). Arellano and Hahn (2006) modify the objective function which also requires

bandwidth selection. The proposed adjustment would not require bandwidth selection just

1Small, Wang, and Yang (2000) survey some existing methods for dealing with multiple roots.
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like other score-based corrections (see for example, Woutersen (2003), Carro (2007), and

Dhaene and Jochmans (2015b)). One can consider this as an improvement because score-

based adjustments exploit the model structure fully in order to create the correction. As a

result, finite sample performance may improve, especially in short panels. In a sense, one

can “loosen” the use of the model structure as T becomes very large, so that choosing a

bandwidth would suffice.

Second, the approach can accommodate multiple individual-specific fixed effects. Mul-

tiple fixed effects may arise when the thresholds in ordered choice models are individual-

specific in addition to accounting for individual-specific effects in the linear predictor (see

Bester and Hansen (2009) and Carro and Traferri (2012)). They also arise when a model

explicitly allows for a vector of individual-specific effects. For example, Hausman and

Pinkovskiy (2013) approximate a dynamic nonlinear model with general predetermined

regressors and a scalar individual-specific effect by a Taylor series expansion around an es-

timator for the scalar individual-specific effect. They show that the transformed model is

an affine function of a vector of fixed effects. The elements of this vector are the positive

integer powers of the deviation of the scalar individual-specific effect from its estimator.

Multiple fixed effects also arise when a model contains time dummies. I do not consider

this case but Fernandez-Val and Weidner (2013) have recently proposed and justified the

large-T bias corrections in this context.

Third, the approach can accommodate predetermined regressors aside from lagged de-

pendent variables. The approach considered in this paper can accommodate predetermined

regressors provided that the feedback process is specified to some degree. The feedback pro-

cess can either be structural or be some flexible reduced form in the spirit of the Mundlak-

Chamberlain device. The specification of the feedback process is partly a matter of in-

terpretation. The Mundlak-Chamberlain device is a correlated random effects approach

where the individual-specific fixed effect is usually expressed as a linear projection of the

individual-specific fixed effect on the observable characteristics of the cross-sectional unit

and a residual (see Mundlak (1978) and Chamberlain (1984)). As proposed by Wooldridge

(2000) and applied by Moral-Benito (2013; 2014), the Mundlak-Chamberlain device can be

used to flexibly specify the feedback process. In contrast to Wooldridge (2000), we do not

specify reduced forms for the individual-specific fixed effect. Corrections that allow for gen-

eral predetermined regressors without resorting to the device include work by Woutersen

(2003), Fernandez-Val (2009), and Fernandez-Val and Weidner (2013).

I give details on the projection approach and its properties in Section 2. I also discuss

some examples where analytical results are available. In Section 3, I present the results of

two small-scale Monte Carlo simulations where I compare the projected score to the correc-

tions proposed by Woutersen (2003), Carro (2007), Fernandez-Val (2009), and Hahn and

Kuersteiner (2011). Other corrections that were not implemented include the corrections

based on (i) modifying the likelihood (see Arellano and Hahn (2006) and Bartolucci et al.
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(2014)) or integrating the likelihood (see Arellano and Bonhomme (2009) and De Bin, Sar-

tori, and Severini (2015)) and (ii) simulation (see Kim and Sun (2009) and Dhaene and

Jochmans (2015b)). I conclude in Section 4 and include a technical appendix for osme of

the calculations and proofs.

2 The projection approach

2.1 Concept

Suppose we draw a random sample {yi = (yi1, . . . , yiT ) : i = 1, . . . , n} from some known

density f (yi;θ0,αi0), where θ0 is the true value for the common parameter and αi0 is the

true value for the incidental parameter. Note that these parameters may be vector-valued

but I assume that these are scalars for the purposes of illustration. Denote E [·;θ0,αi0] to be

the expectation at the true values of the parameters. Denote ∂ k
αi

to be the kth order partial

derivative with respect to αi.

To construct consistent estimators for θ0 in the presence of unknown αi0 that have to

be estimated, we need a concept that will quantify reduced sensitivity to perturbations of

the true value of the incidental parameter, denoted by α′i, holding θ0 fixed. This means that

aside from searching for unbiased estimating functions g (θ ,αi; yi) that have zero expecta-

tion at the true value, i.e.

E [g (θ0,αi0; yi) ;θ0,αi0] = 0,

we have to further narrow the search to classes of estimating functions that satisfy either

of the following conditions:

1. Global ancillarity, where the expectation of the estimating function does not depend

on the perturbed value α′i:

E
�

g (θ0,αi0; yi) ;θ0,α′i
�

= 0, ∀α′i 6= αi0, (1)

2. rth-order local E-ancillarity, where the expectation of the estimating function does

not depend on the perturbed value α′i within some neighborhood of αi0:

∂ k
α′i
E
�

g (θ0,αi0; yi) ;θ0,α′i
�

�

�

�

�

α′i=αi0

= 0, for k = 1, . . . , r (2)

Moment functions satisfying (1) are difficult to construct. Bonhomme (2012) provides a

theory that characterizes such moment functions using functional differencing, which is

motivated by the theory of orthogonal projections. He also shows that fixed-T consistent

estimation is possible in fully parametric and static and some dynamic panel data settings

under some conditions on the distribution of the incidental parameters. Global ancillarity
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is also equivalent to what Cox and Reid (1987) call global orthogonality. Tibshirani and

Wasserman (1994) call this exact orthogonality in expectation. Woutersen (2011) calls

this a zero-score property which holds not just at the true value αi0. Therefore, a sample

analog of the score will produce a consistent root regardless of the value plugged in for the

incidental parameter.

A more attainable goal is to consider (2) so that (1) holds in a smaller region of the

parameter space. To further motivate this condition, I expand, up to the second order, the

density f in the left hand side of (1), i.e.,

E
�

g (θ0,αi0; yi) ;θ0,α′i
�

=
ˆ

g (θ0,αi0; yi) f
�

yi;θ0,α′i
�

d yi

=
ˆ

g (θ0,αi0; yi) f (yi;θ0,αi0) d yi +
ˆ

g (θ0,αi0; yi)∂α′i f
�

yi;θ0,α′i
�

�

�

�

�

α′i=αi0

�

α′i −αi0

�

d yi

+
1
2

ˆ
g (θ0,αi0; yi)∂

2
α′i

f
�

yi;θ0,α′i
�

�

�

�

�

α′i=αi0

�

α′i −αi0

�2
d yi

= E [g (θ0,αi0; yi) ;θ0,αi0]
︸ ︷︷ ︸

(a)

+∂α′iE
�

g (θ0,αi0; yi) ;θ0,α′i
�

�

�

�

�

α′i=αi0
︸ ︷︷ ︸

(b)

�

α′i −αi0

�

+
1
2
∂ 2
α′i
E
�

g (θ0,αi0; yi) ;θ0,α′i
�

�

�

�

�

α′i= eαi

�

α′i −αi0

�2
,

where eαi is in between α′i and αi0. Since g is an unbiased estimating function, the term (a)
in the preceding derivation is equal to zero. Under first-order local E-ancillarity, the term

(b) is also equal to zero. As a result, we have

E
�

g (θ0,αi0; yi) ;θ0,α′i
�

= o
�

α′i −αi0

�

.

Obviously, the extension to rth-order local E-ancillarity will allow us to conclude that

E
�

g (θ0,αi0; yi) ;θ0,α′i
�

= o
�

α′i −αi0

�r
.

Notice that more and more smoothness would be required as one increases r.2

First-order local E-ancillarity is what Cox and Reid (1987) call information orthogo-

nality or local orthogonality when applied to the likelihood setting. They suggest finding

a reparametrization so that θ and αi are information orthogonal. They call the required

transformation an orthogonal reparametrization, which means that, up to a certain order,

estimating αi will have minimal impact on consistently estimating θ . Lancaster (2002)

2Nonsmooth objective functions, especially those that arise in quantile regressions, are not covered by
these ancillarity conditions. It is unclear how smoothing these objective functions will affect the bias-reducing
properties of these ancillarity conditions.
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and Woutersen (2011) derive orthogonal reparametrizations for common panel data mod-

els such as the static single index model with strictly exogenous regressors and the linear

AR(1) dynamic panel data model. Unfortunately, finding an orthogonal reparametrization

requires finding a solution (which may not exist) to a system of partial differential equa-

tions.

2.2 Implications

Instead of finding solutions to the system of partial differential equations and applying

the reparametrization, we can determine how g should be restricted so that g will satisfy

(2). Notice that rth-order local E-ancillarity is equivalent to searching for g such that the

following set of moment conditions will hold:

E
�

g (θ0,αi0; yi)V
(k)

i (θ0,αi0)
�

= 0, for k = 1, . . . , r, (3)

where

V (k)i (θ0,αi0) =
∂ k
αi

f (yi;θ0,αi0)

f (yi;θ0,αi0)
(4)

is the kth element of the so-called Bhattacharyya basis (see the pioneering works by Bhat-

tacharyya (1946; 1947; 1948)). To show the equivalence, write the left hand side of (3)

as

E
�

g (θ0,αi0; yi)V
(k)

i (θ0,αi0)
�

=
ˆ

g (θ0,αi0; yi)∂
k
α′i

f
�

yi;θ0,α′i
�

�

�

�

�

α′i=αi0

d yi

= ∂ k
α′i

ˆ
g (θ0,αi0; yi) f

�

yi;θ0,α′i
�

d yi

�

�

�

�

α′i=αi0

= ∂ k
α′i
E
�

g (θ0,αi0; yi) ;θ0,α′i
�

�

�

�

�

α′i=αi0

,

where the last expression is equal to zero by (2). Note that whenever an estimating function

g satisfies rth-order local E-ancillarity, it also satisfies kth-order local E-ancillarity for all

k = 1, . . . , r − 1.

At this point, I will reduce notation by suppressing the arguments (θ0,αi0). I now show

some of the consequences of (3) when r = 2. First, note that

E
�

∂αi0
g
�

= ∂αi0
E [g]−E

�

gV (1)i

�

= 0, (5)

which follows from the requirement that g be an unbiased estimating function and (3)

when r = 1. Furthermore, another consequence of (3) when r = 2 is

Cov
�

V (1)i ,∂αi0
g
�

= E
�

V (1)i ∂αi0
g
�

−E
�

V (1)i

�

E
�

∂αi0
g
�

= E
�

V (1)i ∂αi0
g
�

= 0. (6)
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This zero covariance property follows from calculating the derivative of (3) with respect to

αi0:

∂αi0
E
�

gV (1)i

�

= E
�

gV (2)i

�

−E
�

V (1)i ∂αi0
g
�

. (7)

Since g satisfies first-order local E-ancillarity, the expression E
�

gV (1)i

�

on the left hand side

is equal to zero. Since g satisfies second-order local E-ancillarity, the first term in the right

hand side of (7) is equal to zero. As a result, the covariance between V (1)i and ∂αi0
g is zero

whenever g satisfies second-order local E-ancillarity. Finally,

E
�

∂ 2
αi0

g
�

= ∂αi0
E
�

∂αi0
g
�

−E
�

V (1)i ∂αi0
g
�

= 0, (8)

which follows from (5) and (6).

It is exactly this zero covariance property (6), along with the consequences of second-

order local E-ancillarity (5) and (8), that mimics the bias reduction that has already been

developed in the literature. Estimator-based corrections in the spirit of Hahn and Newey

(2004) and Hahn and Kuersteiner (2011) trace the source of the bias in the estimator to

the O
�

T−1
�

bias in the unadjusted score or moment function. To illustrate how their work

relates to the projected score, I reproduce their calculation of the bias of some moment

function ui t for the common parameter θ . Note that vi t is the moment function for the

incidental parameter αi. In the context of a static panel data model, the bias of ui t is given

by

E [ui t (θ ,Òαi)] =
1
T

§

E
�

∂αi
ui t

�

βi +E
�

ψi t∂αi
ui t

�

+
1
2
E
�

∂ 2
αi

ui t

�

E
�

ψ2
i t

�

ª

+ o
�

T−1
�

,

where ψi t and βi are components of the higher-order asymptotic expansion for Òαi, i.e.,

ψi t = −E
�

∂αi
vi t

�−1
vi t , βi = −E

�

∂αi
vi t

�−1
§

E
�

ψi t∂αi
vi t

�

+
1
2
E
�

∂ 2
αi

vi t

�

E
�

ψ2
i t

�

ª

Notice that if we chose a moment function ui t such that

E
�

∂αi
ui t

�

= 0, E
�

ψi t∂αi
ui t

�

= 0, E
�

∂ 2
αi

ui t

�

= 0,

the O
�

T−1
�

bias disappears. These three equations are exactly the consequences of first-

order local E-ancillarity, the zero-covariance property in (6), and second-order local E-
ancillarity, respectively. It is in this sense that starting from local E-ancillarity may be more

transparent and intuitive when considering bias corrections.

Let us now consider the case of dynamic nonlinear panel data models. In their mo-

tivation for their bias correction procedure, Hahn and Kuersteiner (2011) show that the
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nonzero center of the asymptotic distribution of the uncorrected MLE is

1
n

n
∑

i=1

1

E
�

∂αi
vi t

�E

�

1
T

�

T
∑

t=1

vi t

��

T
∑

t=1

∂αi
ui t

��

−
E
�

∂ 2
αi

ui t

�

2
�

E
�

∂αi
vi t

��2E





1
T

�

T
∑

t=1

vi t

�2


 .

Once again notice that if we choose a moment function for the common parameters ui t that

satisfies second-order local E-ancillarity, this nonzero center disappears.

In addition to the preceding discussion, the criterion of second-order local E-ancillarity

is also constructive because we can interpret (3) in Hilbert space terms, where the expecta-

tion operator is the inner product. We can think of (3) as finding g that is orthogonal to a

linear subspace spanned by
�

V (1)i , . . . , V (r)i

�

. This linear subspace represents local effects of

incidental parameter fluctuations. An analogous idea appears in linear regression settings

so that we can interpret the desired estimating function g as a residual orthogonal to the

explanatory variables
�

V (1)i , . . . , V (r)i

�

. This residual is called the rth-order projected score.

In principle, one can construct the rth-order projected score but a lot of the benefits in

terms of bias correction can already be reaped at the second order as seen in the preceding

discussions.

2.3 Computation

Let us consider the situation where one has a complete specification of a likelihood for the

data. For every i = 1, . . . , n, let zi = (yi0, yi1, . . . , yiT , x i1, . . . , x iT ) be the data for the ith

unit and z = (z1, . . . , zn) be the full data. Let f (zi t;θ ,αi) be the density of the data where

θ ∈ Rp and αi ∈ Rq. Assume the cross-sectional units are independent of each other. The

joint density of the observables is given by

f (z;θ ,α) =
n
∏

i=1

f (zi;θ ,αi) .

Note that the density f (zi;θ ,αi) is specified such that predetermined regressors can be

accommodated. For example, if we let x t
i = (x i1, . . . , x i t) and y t

i = (yi0, yi1, . . . , yi t), we can

write f (zi;θ ,αi) as

f (zi;θ ,αi) = f (yiT |x T
i , y T−1

i ;θ ,αi)× f (x iT |y T−1
i , x T−1

i )× . . .× f (yi2|x2
i , y1

i ;θ ,αi)

× f (x i2|y1
i , x i1)× f (yi1|x i1, yi0;θ ,αi)× f (yi0, x i1)

We usually specify parametric models for f
�

yi t |x t
i , y t−1

i ;θ ,αi

�

and treat these models as

structural. Flexible reduced forms can then be used to specify the feedback proceeses

f
�

x i t |y t−1
i , x t−1

i

�

. These flexible reduced forms can introduce further individual-specific

fixed effects different from αi. Examples can be found in Moral-Benito (2013; 2014). Note
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that the distribution of the initial values f (yi0, x i1) can be specified or be left unspecified.

If left unspecified, I condition on initial values.

The θ -score and αi-score be can be written as

Ui,0 (θ ,αi; zi) = ∂θ log f (zi;θ ,αi) ,

Vi (θ ,αi; zi) = ∂αi
log f (zi;θ ,αi) .

Observe that the αi-score only uses the time-series observations for the ith cross-sectional

unit and is a function of αi and not of α j for j 6= i.

When we set k = 1 in (4), V (1)i coincides with the αi-score so that V (1)i = Vi. The

second-order terms V (2)i can be written as

V (2)i = ∂αT
i
Vi + ViV

T
i . (9)

The preceding recurrence relation, which can be generalized to the rth order, is a conse-

quence of

∂αT
i
Vi = ∂αT

i

�

∂αi
f

f

�

=
f × ∂αi ,α

T
i
f − ∂αi

f × ∂αT
i
f

f 2
=
∂αi ,α

T
i
f

f
−
∂αi

f

f

∂αT
i
f

f
= V (2)i − ViV

T
i ,

which follows from the quotient rule for derivatives. Note that (9) is a recurrence relation

because one can generate V (r)i from V (r−1)
i . Define the second-order extended information

matrix as

Mi,2 = E













Ui,0

Vi

vec
�

V (2)i

�







�

UT
i,0 V T

i vec
�

V (2)i

�T�






=

�

M11,i M12,i

M21,i M22,i

�

,

where the submatrices are defined as follows:

M11,i = E
�

Ui,0UT
i,0

�

,

M12,i = MT
21,i = E

��

Ui,0V T
i Ui,0vec

�

V (2)i

�T��

,

M22,i = E

��

Vi

vec
�

V (2)i

�

�

�

V T
i vec

�

V (2)i

�T�
�

.

The second-order projected score and its information matrix for the ith unit could be ex-

pressed as

Ui,2 = Ui,0 −M12,i

�

M22,i

�−
�

Vi

vec
�

V (2)i

�

�

, (10)

Ii,2 = M11,i −M12,i

�

M22,i

�−
M21,i. (11)
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where
�

M22,i

�−
is the Moore-Penrose inverse of M22,i. As discussed in the previous subsec-

tion, the second-order projected score is really the residual orthogonal to the linear subspace

spanned by
�

V (1)i , V (2)i

�

. Thus, the second-order projected score Ui,2 makes the θ -score Ui,0

less sensitive to the presence of the incidental parameters. The second-order projected score

and its associated information matrix for the full data can then be computed by summing

up n components of the form (10) and (11).

As a result of all the preceding discussions, I present the following lemma and a more

formal proof in the appendix.

Lemma 1. The second-order projected score Ui,2 is an unbiased estimating equation that

satisfies second-order local E-ancillarity (2).

In general, the projected score may depend on both θ and αi. Thus, we have to substi-

tute an estimator for αi to form a plug-in projected score. The first-order projected score

for the ith unit can be written as

Ui,1 = Ui,0 −E
�

Ui,0V T
i

� �

E
�

ViV
T

i

��−
Vi.

Solving Vi = 0 gives an estimator for αi given θ , denoted by Òαi (θ ). The plug-in first-

order projected score
∑

i
dUi,1 coincides with the profile score for θ . Dhaene and Jochmans

(2015b) show that the panel Poisson model and panel exponential duration model have

profile scores that have zero expectation. Therefore, the plug-in first-order projected score

mimics the behavior of the profile score when applied to these models.

On the other hand, the second-order projected score is given by

Ui,2 = Ui,0 −E
�

Ui,0V T
i

� �

E
�

ViV
T

i

��−
Vi

−E
�

Ui,0vec
�

V (2)i

�T��

E
�

vec
�

V (2)i

�

vec
�

V (2)i

�T��−
vec

�

V (2)i

�

. (12)

The next two propositions show that the plug-in second-order projected score matches the

properties of existing bias corrections.

Proposition 1. Assume that the conditions for (17), the conditions of Lemma 1, and the

central limit theorems for Vi , V 2
i , ∂αi

Ui,2, and ∂ 2
αi

Ui,2 hold. Then,

E
�

dUi,2 (θ0)− Ui,2

�

= E
�

dUi,2 (θ0)− Ui,0

�

= O
�

T−1
�

. (13)

Since the second-order projected score Ui,2 satisfies second-order local E-ancillarity by

Lemma 1, we have (a) E
�

∂αi
Ui,2

�

= 0, (b) zero covariance between ∂αi
Ui,2 and Vi, and (c)

E
�

∂ 2
αi

Ui,2

�

= 0. These three implications of second-order local E-ancillarity are the most

crucial reasons why Ui,2 already provides much of the bias reduction that existing methods

aim to provide, just as sketched in the preceding subsection.
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Assume that the system of equations implied by the plug-in second-order projected score

has a solution in some neighborhood of the true value θ0. We denote this solution by cθ c

and it satisfies
∑

i
dUi,2

�

cθ c
�

= 0. This solution has an asymptotic distribution that is exactly

the asymptotic distribution of the MLE.

Proposition 2. Under the asymptotic scheme where n, T → ∞, n/T → c ∈ (0,∞), and

n/T 3→ 0, we have

p
nT
�

cθ c − θ0

� d
→ N

 

0,

�

lim
n,T→∞

1
nT

n
∑

i=1

E
�

Ui,0UT
i,0

�

�−1!

. (14)

2.4 Examples

Consider the following examples to demonstrate the calculations and some of the compli-

cations (and virtues) that may arise for the plug-in second-order projected score.

Example 1. (Linear AR(1) dynamic panel data model) Let yi t = αi + ρ yi,t−1 + εi t where

εi t ∼ iid N
�

0,σ2
�

for all i = 1, . . . , N and t = 1,2. Note that I do not restrictρ so that yi t will

be stationary. I condition on yi0 and assume that it is uncorrelated with future realizations

of εi t . The MLE for αi given ρ and σ2 is Òαi

�

ρ,σ2
�

= ȳi −ρ ȳi,−1, where ȳi = (yi1 + yi2)/2
and ȳi,−1 = (yi0 + yi1)/2. After calculating the second-order projected score for this case,3

we substitute the MLE for Òαi

�

ρ,σ2
�

and obtain the following system of equations:

1
n

n
∑

i=1

σ2 + (yi1 − yi0) (yi2 − yi1 −ρ (yi1 − yi0))
2σ2

= 0,

1
n

n
∑

i=1

−2σ2 + yi2 − yi1 −ρ (yi1 − yi0)
4σ4

= 0.

Eliminating σ2 from the preceding system gives

2
n

n
∑

i=1

(yi1 − yi0) (yi2 − yi1 −ρ (yi1 − yi0)) +
1
n

n
∑

i=1

(yi2 − yi1 −ρ((yi1 − yi0)))
2 = 0.

Simplifying the equation above gives a quadratic equation inρ of the form Anρ
2+Bnρ+Cn =

0 where

An =
1
n

n
∑

i=1

(yi1 − yi0)
2,

Bn = −
2
n

n
∑

i=1

�

(yi2 − yi1) (yi1 − yi0) + (yi1 − yi0)
2
�

,

3Explicit calculations can be found in the appendix.
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Cn =
1
n

n
∑

i=1

(yi2 − yi1)
2 +

2
n

n
∑

i=1

(yi1 − yi0) (yi2 − yi1) .

I now show consistency of one of the roots of the quadratic equation. First, assume that

An
p
→ A 6= 0. Since Cov (εi2 − εi1, yi1 − yi0) = −σ2, we must have Bn

p
→ −2ρA+ 2σ2 − 2A

and Cn
p
→ ρ2A−2ρσ2+2ρA. By Slutsky’s lemma, we also have B2

n −4AnCn
p
→ 4

�

σ2 − A
�

2.

This means that the quadratic equation will always have real roots. As a result, we have

cρn =
−Bn ±

Æ

B2
n − 4AnCn

2An

p
→ ρ −

�

σ2

A
− 1

�

±
�

�

�

�

σ2

A
− 1

�

�

�

�

,

where we either have cρn
p
→ ρ or cρn

p
→ ρ − 2

�

σ2/A− 1
�

. The estimator for cσ2
n is given by

cσ2
n = −

1
n

n
∑

i=1

(yi1 − yi0) (yi2 − yi1 −cρn (yi1 − yi0)) ,

and will only be consistent if cρn is consistent. Notice that the roots were obtained without

resorting to an iterative procedure unlike the bias correction proposal by Bun and Carree

(2005).

Which of the two roots should be chosen? To illustrate, consider the case where we

have stationarity. Assume that yi0 is drawn from its stationary distribution where E (yi0) =
αi/ (1−ρ) and Var (yi0) = σ2/

�

1−ρ2
�

, where |ρ|< 1. In this case, An
p
→ 2σ2/ (1+ρ) 6=

0. As a result, σ2/A− 1 < 0. Thus, the consistent root is the smaller root of the quadratic

equation. Now, consider the case where ρ = 1. Note that the large-n limit of An is such

that σ2/A− 1 < 0 since yi1 − yi0 = αi + εi1 implies that E (yi1 − yi0)
2 = E (αi + εi1)

2 =
E
�

α2
i

�

+σ2 > σ2. As a result, the consistent root is still the smaller root of the quadratic

equation.

Dhaene and Jochmans (2015a) extensively document the behavior of the resulting like-

lihood obtained after integrating the adjusted profile score. They have shown that the

profile score has a bias that depends only on the common parameters and not on the in-

cidental parameters. The adjusted profile score is then the difference between the profile

score and its bias. They also propose a procedure to choose among the multiple critical

points of the adjusted likelihood. Extensions of the model that allow for incidental trends

can be found in Moon and Phillips (2004), where they also link the second-order projected

score to their proposed moment condition.

Allowing for further lags should be straightforward for the projected score because a

scalar pth order difference equation can be written as a vector first-order difference equa-

tion. Therefore, the quadratic equation derived for the AR(1) case is still going to be a

quadratic equation with coefficients that are matrices. Allowing for regressors, whether

strictly exogenous or predetermined, will not remove the multiple root problem and will

12



have to be examined on a case-by-case basis. �

To explore the effect of including a predetermined regressor, consider an extension of

the previous example that automatically allows for two individual-specific fixed effects.

Example 2. (Linear panel VAR(1) model) Consider the following structural model for the

dynamics of two variables (yi t , x i t):

yi t = φ11 yi,t−1 +φ12 x i,t−1 +ηx i + ε1i t

x i t = φ21 yi,t−1 +φ22 x i,t−1 +ηyi + ε2i t

where the idiosyncratic errors have the following distribution:

�

ε1i t

ε2i t

�

∼ N

��

0

0

�

,Σ=

�

σ11 σ12

σ12 σ22

��

.

for i = 1, . . . , n and t = 1, 2. Assume that (i) Σ is positive definite, i.e., det (Σ) = σ11σ22 −
σ2

12 > 0, (ii) the initial observations (yi0, x i0) are available, and (iii) the distribution of

the fixed effects and inital observations are left unspecified. The structural parameters are

θ = (φ11,φ12,φ21,φ22,σ11,σ22,σ12). The MLEs for ηx i and ηyi given the other parameters

are

Óηx i =
1
2
(yi2 − yi1 (φ11 − 1)−φ11 yi0 −φ12 x i0 −φ12 x i1)

Óηyi =
1
2
(x i2 −φ21 yi0 −φ21 yi1 − x i1 (φ22 − 1)−φ22 x i0)

The explicit calculations for the projected score can be carried out in Mathematica. The

expectation of the plug-in first-order projected score for the ith cross-sectional unit has

nonzero bias, i.e.

E
�

dUi,1

�

=
�

−
1
2

,0, 0,−
1
2

,−
σ22

2det (Σ)
,−

σ11

2 det (Σ)
,−

σ12

det (Σ)

�

.

Notice that this nonzero bias does not depend on ηx i and ηyi. As a result, this fits into Case

2 of Dhaene and Jochmans (2015b), where the profile score has expectation free of the

incidental parameters. Similarly, calculations in Mathematica show that the expectation of

the plug-in second-order projected score for the ith cross-sectional unit has zero bias. �

Next, I consider a nonlinear model where the score of some conditional likelihood for

the model is an unbiased estimating equation.

Example 3. (Static logit model with strictly exogenous regressors) Suppose yi t |xi1,xi2 ∼
Bernoulli (pi t) with probability of success pi t = E (yi t |xi1,xi2) = F(αi+xT

i tβ) for i = 1, . . . , n

and t = 1, 2. Assume that F is the logistic cdf. For j = 0,1, 2, define N j = {i : yi1 + yi2 = j}.
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The MLE for αi for fixed β is given by Òαi = − (xi1 + xi2)
Tβ/2 if i ∈ N1; Òαi →−∞ if i ∈ N0;

Òαi →∞ if i ∈ N2. Following the computations in the appendix, the plug-in second-order

projected score using all i can be computed as

n
∑

i=1

U i
2 =

∑

i∈N0

yi2 +
∑

i∈N2

(yi2 − 1) +
∑

i∈N1

(xi2 − xi1)
T
�

yi2 −
1

1+ e(xi2−xi1)
Tβ

�

=
∑

i∈N1

(xi2 − xi1)
T
�

yi2 −
1

1+ e(xi2−xi1)
Tβ

�

.

Note that the individuals in N0 and N2 have zero contribution to the plug-in second-order

projected score. Although the above expression is monotonically decreasing in β , there is

no closed-form solution to the above estimating equation. Despite this, the plug-in second-

order projected score can be shown that this coincides with score of the conditional likeli-

hood formed from the units for which yi1 + yi2 = 1. Since Chamberlain (1980) shows that

the conditional MLE is
p

n-consistent, the same goes for the root of the plug-in second-order

projected score.

Arellano and Bonhomme (2009) derive a bias-reducing prior for this model for general T

that removes the O
�

T−1
�

bias. Their Monte Carlo simulations include an estimator where

the adjustment was iterated. The simulations indicate that the iterated adjustment will

mimic the properties of the conditional score when n is fixed and T increased to around 20.

In contrast, Dhaene and Jochmans (2015b), who also consider the case of T = 2, show that

the conditional score can be obtained either by an infinite-order profile score adjustment or

by rescaling the profile score by the total number of movers. It is unclear whether rescaling

will extend to the case where T > 2. �

3 Simulations

In this section, I show that the finite sample performance of the plug-in second-order pro-

jected score is as good as or sometimes better than some existing competitors. I focus on

panels with a very small value of T for the following reasons. Panels obtained from devel-

oping countries or panels formed from small-scale experiments usually have single-digit T .

In practice, applied researchers will also use a subset of the data, especially when there are

structural breaks in the time series or when the data are unbalanced. Therefore, it seems

appropriate to choose small values of T to gauge finite sample performance.

I implement the projected score method and other alternatives using Mathematica.4

Mathematica allows us to calculate the symbolic representation of the projected score and

to compute the roots using the FindRoot command. Thus, the user only needs to specify

the likelihood function and modify the code for the situation he considers without recoding

4All Mathematica notebooks and R code are available upon request.
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the actual expressions of the corrections.5 Furthermore, the calculations become much

more compact and organized. I use two starting points, namely, the MLEs for the pooled

and fixed effects model, for the root-finding algorithm. I use the software R to generate

the data for the Monte Carlo experiments and to compute the MLEs (using the routine

glm) under the pooled and fixed effects model.6 The draws for the individual-specific fixed

effects αi are fixed across 5000 replications.

The implementation exploits the comparative advantages of both R and Mathematica.

R can be used to generate samples from a user-specified data generating process and to

perform routine estimation procedures, while Mathematica can be used to symbolically

calculate the adjusted score and find its roots. The coding style in the Mathematica notebook

allows any end user to do the following:

1. Specify either an objective function or an estimating function based on some para-

metric model.

2. Use the built-in commands for differentiation and calculation of expectations to pro-

duce symbolic representations of the adjustment found in (12) .

3. Import data and estimation results. The data and estimation results can come from

any statistical software capable of exporting its outputs to a text file.

4. Use the programmed functions to generate empirical counterparts of the symbolic

representations, to calculate roots and produce output for diagnostics, and to generate

routine estimation results such as standard errors.

The coding style almost creates the feeling of a built-in package which may attract more

users. But the user only has to change the parametric model in the Mathematica notebook

whenever the user contemplates changes in the model.

To construct the plug-in second-order projected score, I compute the projected score

as discussed in (12) and use an estimator for αi. Rather than recompute Òαi (θ ) at every

iteration of the root-finding algorithm, I use a linear approximation of Òαi (θ ) around Òαi

suggested by Bellio and Sartori (2003), i.e.,

Òαi (θ ) = Òαi + j−1
αiαi

�

bθ ,Òαi

�

jαiθ

�

bθ ,Òαi

� �

bθ − θ
�

,

where jαiαi
and jαiθ

are the corresponding (αi,αi) and (αi,θ ) blocks of the observed infor-

mation matrix

j (θ ,αi) =

�

jθθ jθαi

jαiθ
jαiαi

�

,

5Coding the actual expressions would take an inordinate number of lines of code and would only be valid
for a specific model.

6Whenever the MLE does not exist, I take notice of this and I increase the number of replications so that I
could attain the target of 5000 replications.
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respectively. Other alternatives may be possible, for instance, using penalized likelihood es-

timator proposed by Firth (1993) and Kosmidis and Firth (2010) or the EM-based estimator

proposed by Chen (2014). The idea behind these estimators is to improve the quality and

stability of the plug-in values for αi. These alternatives may be helpful in models where the

plug-in values for αi are either extreme or even undefined.

The first data generating process I consider is the static probit model. I use the following

design adapted from Fernandez-Val (2009) with some modifications. The original design

included a stationary AR(1) model with a linear time trend for the exogenous regressor x i t .

Omitting this feature leads to the following modified specification:

yi t |x i1, . . . , x iT ,αi ∼ Ber (pi t) , pi t = Φ (αi + β0 x i t) ,

x i t ∼ iid N (0,1) ,αi ∼ iid N (0,1) , x i t⊥αi,

n= 125, T = 4,β0 = 0.5,

where Φ(·) is the standard normal CDF. An important thing to note is that the regressor is

already independent of the fixed effects. I choose this design because I stripped it down to

the simplest elements. I already explored the static logit case in an example found in the

previous section.

I also compare the performance of the projected score to the uncorrected MLE, the

corrected estimator by Fernandez-Val (2009), and the score corrections by Carro (2007)

and Woutersen (2003). Table 1 contains simulation results for the static probit model

based on 5000 replications. The results indicate good finite sample performance of the

projected score relative to all the other corrections. The Monte Carlo estimate of the bias

is almost reduced by 90% relative to the uncorrected MLE. As a result, taking higher-order

projections may not be needed as the gains will be marginal relative to computational cost.

Furthermore, the standard deviation of the estimator obtained from the projected score is

comparable to the standard deviation of the other estimators. The results clearly indicate

that score-based corrections may be preferable in terms of RMSE. Although the number of

nonconvergent cases is very small relative to the number of replications, I recommend ob-

taining a log of the iterations produced by the root-finding algorithm when implementing

score-based corrections.

The second data generating process is the first-order dynamic logit model. Once more,

I adapt the design from Fernandez-Val (2009) with some modifications.

yi t |yi,t−1, . . . , yi0, x i0, x i1, . . . , x iT ,αi ∼ Ber (pi t) , pi t = F
�

αi +ρ0 yi,t−1 + β0 x i t

�

,

yi0|x i0, x i1, . . . , x iT ,αi ∼ Ber (pi0) , pi0 = F (αi + β0 x i0) ,

x i t ∼ iid L (0,1) ,αi ∼ iid L (0, 1) , x i t⊥αi,

n= 125, T = 3,β0 = 1,ρ0 = 0.5.
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Table 1: Finite sample performance of estimators of β0

Mean Median Standard Median
Estimator bias bias deviation AD RMSE
Uncorrected MLE 0.210 0.203 0.135 0.089 0.723
Fernandez-Val (2009) 0.162 0.156 0.123 0.081 0.674
Woutersen (2003) 0.069 0.064 0.099 0.066 0.577
(12 cases nonconvergent)
Carro (2007) 0.071 0.066 0.100 0.066 0.580
(13 cases nonconvergent)
Projected score 0.030 0.025 0.095 0.063 0.538
Note: True value of β0 is equal to 0.5. Results are based on 5000 replications.

In this design, F(·) is the logistic CDF and L(0, 1) is the logistic distribution with mean 0

and scale 1. The original design assumes that x i t ∼ N
�

0,π2/3
�

and the individual-specific

fixed effects were generated as an average of the four oldest values of x i t . I choose to use

L (0,1) because it is quite similar to N
�

0,π2/3
�

but with heavier tails. I condition on yi0

instead of using the information from the distribution yi0|x i0, x i1, . . . , x iT in the likelihood

function. For this model, the alternatives are the fixed -T consistent estimator proposed by

Honoré and Kyriazidou (2000), the corrected estimators by Fernandez-Val (2009) and Hahn

and Kuersteiner (2011), and the score-based corrections by Carro (2007) and Woutersen

(2003).

Recall that Hahn and Kuersteiner (2011) obtain a characterization of the nonzero center

of the asymptotic distribution of the MLE as discussed in Example ??. Estimator-based

corrections will have to rely on an estimator of this nonzero center. This nonzero center

depends on the cross-spectrum of the αi-score and the derivative of the θ -score with respect

to αi at the zero frequency and the spectrum of the αi-score at the zero frequency. Since

the cross-spectrum and spectrum are infinite sums of cross-covariances and covariances,

respectively, a feasible prcoedure would require some lag truncation. As a result, we would

require an integer bandwidth of lower order than T 1/2 for trimming purposes and for the

asymptotic theory to hold. Since T = 3, I set the bandwidth at values 0, 1, and 2.

In contrast, Honoré and Kyriazidou (2000) propose an estimator based on the maxi-

mizer of a likelihood conditioned on the subset of observations for which {x i2 = x i3}. Since

this set is a zero probability event given the DGP, a kernel with a corresponding bandwidth

is used to give higher weight to observations where x i2 is close to x i3 and give lower weight

to observations otherwise. I use a standard normal kernel for this purpose. Furthermore, I

use the optimal bandwidth derived by Honoré and Kyriazidou (2000) which is a constant

multiple of T−1/5. I set this constant to values 1, 8, and 64 just as Honoré and Kyriazidou

(2000) do so in their own simulations.

The Monte Carlo results in Table 2 indicate that score-based corrections are performing

quite well relative to estimator-based corrections for the design I consider. The bias of the
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root of the projected score is almost eliminated for both coefficients of the linear predictor.

In contrast, the other score-based estimators are having problems eliminating the bias in the

autoregressive coefficient. There seems to be a point at which a higher bandwidth will not

improve finite sample performance of estimator-based corrections. In fact, the estimator-

based correction by Hahn and Kuersteiner (2011) almost has the same performance as

uncorrected MLE when the bandwidth is equal to 2. Furthermore, the dispersion of the

corrected estimators is less than half that of the uncorrected MLE with the exception of the

correction by Hahn and Kuersteiner (2011). The dispersion of the root of the projected

score is more in line with that of the uncorrected MLE.

I also present two power curves in Table 3 for the projected score in the dynamic logit

model. I do not present the results for the competing procedures because the estimated

biases are large relative to the estimated standard deviation. The rejection probability of

the test ρ = 0.5 is almost 5% while that of the test β = 1 is about 2%. The power curves are

steeper for the coefficient of the exogenous regressor than for the autoregressive coefficient.

Table 3: Inference using the projected score for the dynamic logit model
H0 : ρ = ρ0 H0 : β = β0

Note: Significance level set at 5% and represented as horizontal line

It is clear from the Monte Carlo results that the projected score is an extremely attractive

alternative to some of the competing bias-reduction procedures. The biggest downside is

the computational time. For the designs considered, setting up of the projected score, the

calculation of the root, and the standard error calculations took about 2 to 5 minutes for

every replication on a laptop with 8 GB memory and an i7-processor. Even if we exploit

parallel processing, the memory requirement is almost too great for all cores to be used all at

once, especially when conducting Monte Carlo simulations. The reason for the high memory

requirement is in the nature of the correction – a symbolic representation is created and

the data are substituted into this representation. Despite these issues, the implementation

is very straightforward and would not require us to program new procedures every time we

make changes to the model.
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4 Concluding remarks

This paper develops a bias reduction method for the estimators of common parameters of a

linear or nonlinear panel data model with individual-specific fixed effects. The past decades

saw a spur of research on bias reduction methods. It is easier to see what these methods

have in common by considering what is called the projected score. This projected score is

calculated by projecting the score vector for the common parameters onto the orthogonal

complement of a space characterized by incidental parameter fluctuations.

I show that projected scores reduce the asymptotic bias of the estimators of common

parameters in panel data models. Although the projected score has been introduced two

decades ago, its widespread use has been hindered by computational issues. Relative to

other bias reduction procedures, computation (in terms of processor time and memory)

may be prohibitive but programming is less error-prone and more intuitive. I hope that

this will encourage applied researchers to use the projected score. Monte Carlo simulations

indicate that the bias-reducing properties of the projected score already take effect even

for very small sample sizes usually encountered when panel data models are estimated for

subsamples. Finally, the applied researcher need not choose a bandwidth anymore.

Future work on practical aspects include extensions to nonsmooth functions arising, say,

in quantile regression. In addition, the projection idea has to be modified when one wants

to extend to nonlikelihood settings and when one wants to include time effects. I intend to

pursue these extensions in the future.

References

Arellano, M and S Bonhomme (2009). Robust Priors in Nonlinear Panel Data Models. Econo-

metrica 77.(2), 489–536.

Arellano, M and J Hahn (2006). A Likelihood-Based Approximate Solution To The Incidental

Parameter Problem In Dynamic Nonlinear Models With Multiple Effects. Working Papers.

CEMFI. http://ideas.repec.org/p/cmf/wpaper/wp2006_0613.html.

Arellano, M and J Hahn (2007). “Understanding Bias in Nonlinear Panel Models: Some

Recent Developments”. In: Advances in Economics and Econometrics: Theory and Appli-

cations, Ninth World Congress. Ed. by R Blundell, W Newey, and T Persson. Vol. 3. Cam-

bridge University Press. Chap. 12, pp.381–409.

Bartolucci, F, R Bellio, A Salvan, and N Sartori (2014). Modified Profile Likelihood for Fixed-

Effects Panel Data Models. Tech. rep. Forthcoming in Econometric Reviews.

Bellio, R and N Sartori (2003). Extending conditional likelihood in models for stratified

binary data. Statistical Methods and Applications 12.(2), 121–132.

20

http://ideas.repec.org/p/cmf/wpaper/wp2006_0613.html


Bester, CA and C Hansen (2009). A penalty function approach to bias reduction in nonlinear

panel models with fixed effects. Journal of Business and Economic Statistics 27.(2), 131–

148.

Bhattacharyya, A (1946). On Some Analogues of the Amount of Information and Their Use
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in Statistical Estimation (Contd.) Sankhyā: The Indian Journal of Statistics (1933-1960)

8.(3), 201–218.

Bhattacharyya, A (1948). On Some Analogues of the Amount of Information and Their Use

in Statistical Estimation (Concluded). Sankhyā: The Indian Journal of Statistics (1933-
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A Projected score calculations

Projected score for the AR(1) linear dynamic panel data model

The model specification is as follows:

Yi,t−1 = {yi0, yi1, . . . , yi,t−1},

yi t |Yi,t−1 ∼ iid N(αi +ρ yi,t−1,σ2), i = 1, . . . , n; t = 1 . . . , T (15)

Assume yi0 is available and we condition on yi0. Let ui t = yi t −αi −ρ yi,t−1. The scores for

the common parameters ρ and σ2 and the incidental parameter αi are given by:

Uρi,0 =
1
σ2

T
∑

t=1

ui t yi,t−1,

Uσ
2

i,0 = −
T

2σ2
+

1
2σ4

T
∑

t=1

u2
i t ,

V (1)i =
1
σ2

T
∑

t=1

ui t .

To calculate the second-order projected score, we need the following elements:

V (2)i = −
T
σ2
+

�

1
σ2

T
∑

t=1

ui t

�2

,

E[(V (1)i )
2] =

1
σ4

E

�

T
∑

t=1

u2
i t + 2

∑

t=2

∑

s<t

uisui t

�

=
1
σ4

�

T
∑

t=1

σ2 + 2
∑

t=2

∑

s<t

E(ui tuis)

�

=
T
σ2

.

Note that only the second moments of (15) are used for the above calculation.
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E(V (1)i V (2)i ) = −
T
σ4

T
∑

t=1

E(ui t) +
1
σ6

E

�

T
∑

t=1

ui t
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=
1
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��

T
∑
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∑
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∑
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∑
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∑
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s 6=t
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T
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s<t

uisui tuir

�

= 0.

Thus, V (1)i and V (2)i are orthogonal. Note that we used the third moments of (15) for the

preceding calculation.

E[(V (2)i )
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T 2

σ4
−

2T
σ6

E

�

T
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ui t

�2

+
1
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T 2
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2
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We have used fourth moments of (15) for the preceding calculation.

E(Uρi,0Vi) =
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Thus, the second-order projected score is given by the system of equations below:
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Projected score for the static binary choice model with an exogenous

regressor

Suppose yi t |x i1, x i2 ∼ Ber(pi t) with

pi t = E(yi t |x i1, . . . , x iT ) = F(αi + xT
i tβ)≡ Fi t

for i = 1, . . . , N and t = 1,2. The uncentered moments of this conditional distribution are

all equal to Fi t . The second and third centered moments are given by

Var(yi t |x i1, . . . , x iT ) = Fi t(1− Fi t)

E((yi t − Fi t)
3|x i1, . . . , x iT ) = Fi t(1− Fi t)(1− 2Fi t)
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The log-likelihood contribution for the ith cross-section is

2
∑

t=1

[yi t log Fi t + (1− yi t) log(1− Fi t)]

Define

hi t =
fi t

Fi t(1− Fi t)

where fi t ≡ f (αi + xT
i tβ). For the logit case, we must have hi t = 1. The scores for the

structural parameter and the incidental parameter are

Ui,0 =
2
∑

t=1

(yi t − Fi t)hi t x i t

V (1)i =
2
∑

t=1

(yi t − Fi t)hi t

The components of the second-order projected score are calculated below. First, E(V 2
i ) is

given by

(V (1)i )
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2
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2h2
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2
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Note that we used second moment properties and the independence. Next, V (2)i is given by:
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=
2
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�
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To orthogonalize V (2)i , we compute

V (2),∗i = V (2)i −
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Note that
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⇒ E(V (1)i V (2)i ) = Fi1(1− Fi1)(1− 2Fi1)h
3
i1 + Fi2(1− Fi2)(1− 2Fi2)h

3
i2

+ Fi1(1− Fi1)(∂αi
hi1)hi1 + Fi2(1− Fi2)(∂αi

hi2)hi2

The last two terms above are equal to zero in the logit case since ∂αi
hi t = 0. Now, E(V (2),∗i )2 =

E(V (2),∗i V (2)i ) = E(∂ 2
αi

V (2),∗i ). The resulting expression will be a very complicated expression

and has to be computed symbolically. Next, we compute E(Ui,0V (1)i ):

Ui,0V (1)i =
2
∑

t=1

�

(yi t − Fi t)
2h2

i t x i t

�

+ (yi1 − Fi1)(yi2 − Fi2)hi2 + (yi2 − Fi2)(yi1 − Fi1)hi1

As a result, we have

E(Ui,0V (1)i ) =
2
∑

t=1

Fi t(1− Fi t)h
2
i t x i t

Finally, E(Ui,0V (2),∗i ) has to be computed symbolically.

B Proofs of some results

Proof of Lemma 1

To show that Ui,2 is an unbiased estimating equation, we have to show that E
�

Ui,0

�

=
0, E [Vi] = 0, and E

�

vec
�

V (2)i

��

= 0. The first two statements follow from the zero-

mean property of the scores. Since E
�

vec
�

V (2)i

��

= vec
�

E
�

V (2)i

��

, we have to show that

E
�

V (2)i

�

= 0. Differentiating E [Vi] = 0 with respect to αi gives the desired result. Thus,

we have shown that Ui,2 is an unbiased estimating equation. To show second-order E-
ancillarity, we can show that (12) satisfies the moment conditions in (3) for k = 1, 2. This

follows by construction. �

Proof of Proposition 1

To simplify the exposition, I return to the case where incidental parameter is scalar. To show

(13), consider a second-order Taylor series expansion of the plug-in second-order projected

score for the ith individual about the true value αi0, i.e.

dUi,2 (θ0) = Ui,2 + ∂αi
Ui,2 (Òαi (θ0)−αi0) +

1
2
∂ 2
αi

Ui,2 (Òαi (θ0)−αi0)
2

+Op

�

T−1/2
�

. (16)

Under regularity conditions for maximum likelihood estimation, the three terms in (16) are

Op

�

T 1/2
�

, Op

�

T 1/2
�

, and Op (1). The final term is a zero mean Op

�

T−1/2
�

term. Note that

the first-order conditions used to obtain a plug-in estimator for αi can be expanded in the
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following way:
ÒVi (θ0) = Vi + ∂αi

Vi (Òαi (θ0)−αi0) +Op (1) .

Since the right hand size is equal to zero, we can write

Òαi (θ0)−αi0 = −
Vi

E
�

∂αi
Vi

� +Op

�
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�

. (17)

Furthermore, the square of Òαi (θ0)−αi0 can be written as
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Note that E (Vi) = 0 because the αi-score is an unbiased estimating equation. Central limit

theorems for Vi and V 2
i allow us to obtain (18). After substituting (17) into ∂αi

Ui,2 (Òαi (θ0)−αi0)
, we have
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A central limit theorem for ∂αi
Ui,2 and second-order local E-ancillarity allow us to produce

the previous derivation. The expression in (19) involves the product of ∂αi
Ui,2 and Vi and

a zero mean Op

�

T−1/2
�

term. As a result, the expectation of the term ∂αi
Ui,2 (Òαi (θ0)−αi0)

is O
�

T−1
�

.

Next, we substitute (18) into ∂ 2
αi

Ui,2 (Òαi (θ0)−αi0) 2. As a result, we obtain

∂ 2
αi

Ui,2 (Òαi (θ0)−αi0)
2 =

∂ 2
αi

Ui,2E
�

V 2
i

�

�

E
�

∂αi
Vi

��2 + ∂
2
αi

Ui,2Op

�

T−3/2
�

=
∂ 2
αi

Ui,2E
�

V 2
i

�

�

E
�

∂αi
Vi

��2 +E
�

∂ 2
αi

Ui,2

�

Op

�

T−3/2
�

+Op

�

T 1/2
�

Op

�

T−3/2
�
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=
∂ 2
αi

Ui,2E
�

V 2
i

�

�

E
�

∂αi
Vi

��2 +Op

�

T−1
�

(20)

The expression in (20) involves ∂ 2
αi

Ui,2, which has zero expectation because of second-

order local E-ancillarity, and an Op

�

T−1
�

term. As a result, the expectation of the term

∂ 2
αi

Ui,2 (Òαi (θ0)−αi0) is O
�

T−1
�

.

Proof of Proposition 2

Assume that the system of equations implied by the plug-in second-order projected score

has a solution in some neighborhood of the true value θ0. We denote this solution bycθ c and

it satisfies
∑N

i=1
dUi,2

�

cθ c
�

= 0. Consider the following first-order Taylor series expansion of

the plug-in second-order projected score around θ0, i.e.

n
∑

i=1

dUi,2

�

cθ c
�

=
n
∑

i=1

dUi,2 (θ0) +
n
∑

i=1

d
dθ
dUi,2

�

θ̄
�

�

cθ c − θ0

�

. (21)

Note that the left hand side of (21) is equal to zero because cθ c is the root of the plug-in

second-order projected score. Rewrite (21) as

p
nT
�

cθ c − θ0

�

=

�

1
nT

n
∑

i=1

d
dθ
dUi,2

�

θ̄
�

�−1
1
p

nT

n
∑

i=1

dUi,2 (θ0) . (22)

Let n, T →∞ and n/T → c ∈ (0,∞). Note that

1
p

nT

n
∑

i=1

�

dUi,2 (θ0)− Ui,2

�

=
1
p

nT

n
∑

i=1

E
�

dUi,2 (θ0)− Ui,2

�

+Op (1) = Op

�s

n
T 3

�

+Op (1)

The first equality comes from replacing the empirical mean with an expectation and leav-

ing behind a zero-mean Op (1) term. The second equality comes from the order calcu-

lation in Proposition 1. Provided that n/T 3 → 0, 1p
nT

∑

i
dUi,2 (θ0) can be approximated by

1p
nT

∑

i Ui,2 and the latter quantity is asymptotically normal. A central limit theorem applies

to 1p
nT

∑

i Ui,2 (similar to the score in likelihood settings), i.e.

1
p

nT

n
∑

i=1

Ui,2
d
→ N

�

0, lim
n,T→∞

1
nT

n
∑

i=1

E
�

Ui,2UT
i,2

�

�

.

Next, note that

d
dθ
dUi,2 (θ )

�

�

�

�

θ=θ̄

=
�

∂θdUi,2 (θ ) +
�

∂αi
dUi,2 (θ )

�

(∂θÒαi (θ ))
�

�

�

�

�

θ=θ̄

(23)
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by the chain rule. Replacing dUi,2 (θ ) with its Taylor series expansion

dUi,2 (θ ) = Ui,2 (θ ,αi0) + ∂αi
Ui,2 (θ ,αi0) (Òαi (θ )−αi0) +Op (1) (24)

and calculating the derivatives in (23) yields

∂θdUi,2 (θ ) = ∂θUi,2 (θ ,αi0) + ∂
2
θαi

Ui,2 (θ ,αi0) (Òαi (θ )−αi0)

+∂αi
Ui,2 (θ ,αi0) (∂θÒαi (θ )) +Op (1) , (25)

∂αi
dUi,2 (θ ) = ∂αi

Ui,2 (θ ,αi0) + ∂
2
αi

Ui,2 (θ ,αi0) (Òαi (θ )−αi0)

+∂αi
Ui,2 (θ ,αi0)

�

∂αi
Òαi (θ )

�

+Op (1) . (26)

Taking probability limits, we have the following components:

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂θUi,2 (θ ,αi0)

�

�

�

�

θ=θ̄

= lim
n,T→∞

1
nT

n
∑

i=1

E
�

∂θUi,2

�

,

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂ 2
θαi

Ui,2 (θ ,αi0) (Òαi (θ )−αi0)

�

�

�

�

θ=θ̄

= 0,

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂αi

Ui,2 (θ ,αi0)
�

∂αi
Òαi (θ )

�

�

�

�

�

θ=θ̄

= 0,

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂αi

Ui,2 (θ ,αi0)

�

�

�

�

θ=θ̄

= 0,

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂ 2
αi

Ui,2 (θ ,αi0) (Òαi (θ )−αi0)

�

�

�

�

θ=θ̄

= 0,

plim
n→∞

1
n

n
∑

i=1

plim
T→∞

1
T
∂αi

Ui,2 (θ ,αi0)
�

∂αi
Òαi (θ )

�

�

�

�

�

θ=θ̄

= 0.

Note that as T → ∞, we have both θ̄
p
→ θ0 and Òαi

�

θ̄
� p
→ αi0. The second and fifth

equalities follow Òαi

�

θ̄
� p
→ αi0 as T → ∞. The third, fourth, and sixth equalities would

follow from the law of large numbers and second-order ancillarity. The Op (1) terms in

(24), (25), and (26) all converge to zero because Òαi

�

θ̄
� p
→ αi0 as T →∞. We can then

conclude that

plim
n,T→∞

1
nT

n
∑

i=1

d
dθ
dUi,2 (θ )

�

�

�

�

θ=θ̄

= lim
n,T→∞

1
nT

n
∑

i=1

E
�

∂θUi,2

�

.

Notice that Ui,2 behaves like Ui,0 asymptotically because the correction in (12) has expecta-

tion zero at the true value. As long as the information identity holds, we have E
�

Ui,2UT
i,2

�

=

E
�

Ui,0UT
i,0

�

= E
�

∂θUi,0

�

. Otherwise, we have the usual sandwich-type asymptotic covari-

ance matrix.
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Alternative proof of (14)

In this appendix, we prove the main results in the spirit of the papers by Hahn and Newey

(2004) and Hahn and Kuersteiner (2011). We also note some departures from their proof.

Let Fi and ÒFi denote the CDF and its empirical counterpart for the ith individual. Define

Fi(ε) = Fi + ε
p

T (ÒFi − Fi) and ∆iT =
p

T (ÒFi − Fi), where ε ∈ [0, T−1/2]. We have F(ε) =
F+ ε

p
T (bF− F) in vector form.

Let αi(θ , Fi(ε)) and θ (F(ε)) be the solutions to the estimating equations below:

ˆ
Vi(θ ,αi(θ , Fi(ε));zi) dFi(ε) = 0 (27)

n
∑

i=1

ˆ
Ui,2(θ (F(ε)),αi(θ (F(ε)), Fi(ε));z) dFi(ε) = 0 (28)

The plug-in used for the αi ’s in the second-order projected score can be written as Òαi(θ ) =
αi(θ , Fi(T−1/2)). The root for the plug-in version of the second-order projected score can

be written as bθ = θ (F(T−1/2)). On the other hand, the true values can be written as θ 0 =
θ (F(0)) = θ (F) and αi0 = αi(θ , Fi).

Expand the functional θ (bF) about the true value θ (F) up to the third order, i.e.

θ (bF)− θ (F) =
1
p

T
θ ε(0) +

1
2

�

1
p

T

�2

θ εε(0) +
1
6

�

1
p

T

�3

θ εεε(ε̃) (29)

where

θ ε(0) = ∂εθ (F(ε))|ε=0, θ εε(0) = ∂ 2
ε
θ (F(ε))|ε=0, θ εεε(0) = ∂ 3

ε
θ (F(ε))|ε=ε̃∈[0,T−1/2] (30)

Define the object

hi(ε) = Ui,2(θ (F(ε)),αi(θ (F(ε)), Fi(ε))) (31)

where the dependence on the data is suppressed. Hahn and Newey (2004) and Hahn and

Kuersteiner (2011) use Ui,1 instead of Ui,2. It follows that (28) can be rewritten as

1
n

n
∑

i=1

ˆ
hi(ε) dFi(ε) = 0 (32)

We show that when n, T →∞ such that n/T → c ∈ (0,∞),

p
nT (θ (bF)− θ (F))

d
→ N

 

0,

�

lim
n,T→∞

1
nT

n
∑

i=1

Ii

�−1!

(33)

in the following manner:

1. Differentiate (32) with respect to ε twice. The resulting expressions can be decom-
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posed into two terms: a term that requires integration with respect to Fi(ε) and a

term that characterizes the “tail” or the remainder. We have

1
n

n
∑

i=1

ˆ
dhi(ε)

dε
dFi(ε) +

1
n

n
∑

i=1

ˆ
hi(ε) d∆iT = 0 (34)

1
n

n
∑

i=1

ˆ
d2hi(ε)

dε2
dFi(ε) +

2
n

n
∑

i=1

ˆ
dhi(ε)

dε
d∆iT = 0 (35)

2. Compute the total derivatives in the previous equations noting the dependence of

θ (F(ε)) and αi(θ (F(ε)), Fi(ε)) on ε.

dhi(ε)
dε

= ∂θhi(ε)∂εθ + ∂αi
hi(ε)(∂θαi)

T∂εθ + ∂αi
hi(ε)∂εαi

d2hi(ε)
dε2

= ∂εθ
�

∂ 2
θ

hi(ε)∂εθ + ∂
2
θ ,αi

hi(ε)∂θαi∂εθ + ∂
2
θ ,αi

hi(ε)∂εαi

�

+ ∂θhi(ε)∂
2
ε
θ

︸ ︷︷ ︸

∂ε(∂θhi(ε)∂εθ )

+∂θαi∂εθ
�

∂ 2
θ ,αi

hi(ε)∂εθ + ∂
2
αi

hi(ε)∂θαi∂εθ + ∂
2
αi

hi(ε)∂εαi

�

︸ ︷︷ ︸

∂ε(∂αi
hi(ε))

+∂αi
hi(ε)

�

(∂εθ )
2∂ 2
θ αi + ∂

2
θ ,εαi∂εθ + ∂θαi∂

2
ε
θ
�

︸ ︷︷ ︸

∂ε(∂θαi∂εθ )

+∂εαi

�

∂ 2
θ ,αi

hi(ε)∂εθ + ∂
2
αi

hi(ε)∂θαi∂εθ + ∂
2
αi

hi(ε)∂εαi

�

+∂αi
hi(ε)

�

(∂ 2
θ ,εαi)

T∂εθ + ∂
2
ε
αi

�

︸ ︷︷ ︸

∂ε(∂εαi)

3. Next, we have to derive θ ε(0) and θ εε(0). This means that we have to evaluate the

expressions in (b) at ε = 0. Use the definitions of θ 0, αi0 and (31) to rewrite the

resulting expressions. As a consequence, we have

dhi(ε)
dε

�

�

�

�

ε=0

=
�

∂θUi,2(θ 0,αi0) + ∂αi
Ui,2(θ 0,αi0)(∂θαi(θ 0, Fi))

T
�

θ ε(0)

+∂αi
Ui,2(θ 0,αi0)∂θαi(θ 0, Fi)θ

ε(0)

+∂αi
Ui,2(θ 0,αi0)∂εαi(θ 0, Fi) (36)

d2hi(ε)
dε2

�

�

�

�

ε=0

= θ ε(0)
�

∂ 2
θ Ui,2(θ 0,αi0)θ

ε(0) + ∂ 2
θ ,αi

Ui,2(θ 0,αi0)∂θαi(θ 0, Fi)θ
ε(0)

�

+ θ ε(0)∂ 2
θ ,αi

Ui,2(θ 0,αi0)∂εαi(θ 0, Fi) + ∂θUi,2(θ 0,αi0)θ
εε(0)

+∂θαi(θ 0, Fi)θ
ε(0)

�

∂ 2
θ ,αi

Ui,2(θ 0,αi0)θ
ε(0)

�

+
�



�
	∂θαi(θ 0, Fi)θ

ε(0)
�

∂ 2
αi

Ui,2(θ 0,αi0)∂θαi(θ 0, Fi)θ
ε(0)

�
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+ ∂θαi(θ 0, Fi)θ
ε(0)

�

∂ 2
αi

Ui,2(θ 0,αi0)∂εαi(θ 0, Fi)
�

+
�



�
	∂αi

Ui,2(θ 0,αi0)(θ
ε(0))T∂ 2

θ αi(θ 0, Fi)θ
ε(0)

+ ∂αi
Ui,2(θ 0,αi0)∂ 2

θ ,εαi(θ 0, Fi)θ
ε(0)

+
�



�
	∂αi

Ui,2(θ 0,αi0) [∂θαi(θ 0, Fi)θ
εε(0)]

+ ∂εαi(θ 0, Fi)
�

∂ 2
θ ,αi

Ui,2(θ 0,αi0)θ
ε(0)

�

+ ∂εαi(θ 0, Fi)
�

∂ 2
αi

Ui,2(θ 0,αi0)∂θαi(θ 0, Fi)θ
ε(0)

�

+ ∂εαi(θ 0, Fi)
�

∂ 2
αi

Ui,2(θ 0,αi0)∂εαi(θ 0, Fi)
�

+ ∂αi
Ui,2(θ 0,αi0)∂ 2

θ ,εαi(θ 0, Fi)θ
ε(0)

+ ∂αi
Ui,2(θ 0,αi0)∂ 2

ε
αi(θ 0, Fi) (37)

4. Substitute the above expressions into (34) and (35). The first sum in (34) and (35)

when evaluated at ε = 0 becomes the expectation with respect to the true values

while the second sum becomes a “tail” term characterizing the difference between the

realized distribution ÒFi and the true one Fi. Since θ ε(0) and θ εε(0) do not depend on

the data, they can be treated as constants with respect to the expectation.

5. We need to derive the expressions for the first and second derivatives of αi(θ , Fi)
with respect to θ and ε. Differentiate (27) with respect to θ and ε. Solve the result-

ing system of two equations in two unknowns for ∂θαi(θ , Fi(ε)) and ∂εαi(θ , Fi(ε)).
Next, get the second derivatives of (27) with respect to θ and ε. Solve the result-

ing system of three equations in three unknowns for ∂ 2
θ αi(θ , Fi(ε)), ∂ 2

θ ,εαi(θ , Fi(ε)),
and ∂ 2

ε
αi(θ , Fi(ε)).7 In effect, we are applying the Implicit Function Theorem and

evaluating at ε= 0 and θ = θ 0. The resulting first derivatives would be

∂θαi(θ 0, Fi) = −
E(∂θV (1)i )

E(∂αi
V (1)i )

= Op(1) (38)

∂εαi(θ 0, Fi) = −
T 1/2 1

T

�

V (1)i −E(V (1)i )
�

E(∂αi
V (1)i )

= Op(T
−1) (39)

7The systems of equations can be found in the appendix of Hahn and Kuersteiner (2011). Refer to pages
1178 and 1181. Solving the system of equations is not as hard as it sounds because the coefficient matrix is
diagonal.
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The resulting second derivatives would be

∂ 2
θ αi(θ 0, Fi) = −

1

E(∂αi
V (1)i )

�

E(∂ 2
θ V (1)i ) + ∂θαi(θ 0, Fi)E(∂ 2

θ ,αi
V (1)i )

T
�

−
1

E(∂αi
V (1)i )

�

E(∂ 2
θ ,αi

V (1)i )(∂θαi(θ 0, Fi))
T
�

−
1

E(∂αi
V (1)i )

�

E(∂ 2
αi

V (1)i )∂θαi(θ 0, Fi)∂θαi(θ 0, Fi)
T
�

= Op(1) (40)

∂ 2
θ ,εαi(θ 0, Fi) = −

1

E(∂αi
V (1)i )

�

E(∂ 2
θ ,αi

V (1)i )∂εαi(θ 0, Fi) + T 1/2 1
T

�

∂θV (1)i −E(∂θV (1)i )
�

�

−
1

E(∂αi
V (1)i )

�

E(∂ 2
αi

V (1)i )∂θαi(θ 0, Fi)∂εαi(θ 0, Fi)
�

−
1

E(∂αi
V (1)i )

�

T 1/2 1
T

�

∂αi
V (1)i −E(∂αi

V (1)i )
�

∂θαi(θ 0, Fi)
�

= Op(T
−1) (41)

∂ 2
ε
αi(θ 0, Fi) = −

1

E(∂αi
V (1)i )

�

E(∂ 2
αi

V (1)i )(∂εαi(θ 0, Fi))
2
�

−
1

E(∂αi
V (1)i )

�

2T 1/2 1
T

�

∂αi
V (1)i −E(∂αi

V (1)i )
�

∂εαi(θ 0, Fi)
�

= Op(T
−2) (42)

Central limit theorems are applied to ∂αi
V (1)i and ∂θV (1)i , so that the resulting order

of magnitude calculations can be obtained.

6. We are now in a position to simplify θ ε(0) and θ εε(0).

(a) First, we find an expression for θ ε(0). Calculate the expectation of every term in

(36) at the true values. Note that θ ε(0) do not depend on the data. Further note

that (38) is already a constant while (39) depends on the data through V (1)i .8

Second-order E-ancillarity implies thatE(∂αi
Ui,2(θ 0,αi0)) = 0 andE(V (1)i ∂αi

Ui,2(θ 0,αi0)) =
0, as in (7). As a result, the first sum in (34) is given by

1
n

n
∑

i=1

ˆ
dhi(0)

dε
dFi =

�

1
n

n
∑

i=1

E(∂θUi,2(θ 0,αi0))

�

θ ε(0) (43)

8A curious aspect of the proof in Hahn and Newey (2004) and Hahn and Kuersteiner (2011) is that they
treat (39), (41), and (42) as constants yet they still depend on the data. We solve the system of equations
mentioned in Step 5 and make the order of magnitude calculations explicit to take into account the latter
fact.
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The remaining term in (34) is given by

1
n

n
∑

i=1

ˆ
hi(ε) d∆iT =

1
n

n
∑

i=1

ˆ
Ui,2(θ 0,αi0) d∆iT

=
p

T
n

n
∑

i=1

1
T

�

Ui,2(θ 0,αi0)−E(Ui,2(θ 0,αi0))
�

(44)

Define Ii as follows, provided integration and differentiation can be interchanged:

Ii = E[(Ui,2(θ 0,αi0))(Ui,2(θ 0,αi0))
T] = E(∂θUi,2(θ 0,αi0)) (45)

Thus, we have the following expression for θ ε(0), whose asymptotic distribution

we seek:

θ ε(0) =

�

1
n

n
∑

i=1

Ii

�−1 p
T

n

n
∑

i=1

1
T

�

Ui,2(θ 0,αi0)−E(Ui,2(θ 0,αi0))
�

(46)

Assume that a central limit theorem holds for Ui,2(θ 0,αi0), i.e.

p
nT

�

1
nT

n
∑

i=1

Ui,2(θ 0,αi0)

�

d
→ N

�

0, lim
n,T→∞

1
nT

n
∑

i=1

Ii

�

(47)

As a consequence, we have

p
nT

1
p

T
θ ε(0) =

�

1
nT

n
∑

i=1

Ii

�−1�

1
p

nT

n
∑

i=1

Ui,2(θ 0,αi0)

�

d
→ N

 

0,

�

lim
n,T→∞

1
nT

n
∑

i=1

Ii

�−1!

(48)

Therefore,

θ ε(0) = Op(n
−1/2) (49)

(b) Next we find an expression for θ εε(0). Calculate the expectation of every term

in (37) at the true values while noting the orders of magnitude in (38), (39),

(40), (41), (42), and (49). The boxed, double-boxed, oval-boxed and unboxed

terms in (37) are Op(n−1/2), Op(T−1), 0, and Op(T n−1) respectively. The first

sum in (35) can now be written as

1
n

n
∑

i=1

ˆ
d2hi(ε)

dε2
dFi(ε) =

�

1
n

n
∑

i=1

Ii

�

θ εε(0) +Op

�

T
n

�

+Op

�

1
T

�

+Op

�

1
p

n

�

(50)

After applying central limit theorems for ∂θUi,2(θ 0,αi0) and ∂αi
Ui,2(θ 0,αi0) and
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noting the order of magnitude calculations in (38), (39), and (49), the “tail”

term in (35) can now be written as

2
n

n
∑

i=1

ˆ
dhi(ε)

dε
d∆iT = Op

�

1
p

n

�

+Op

�

1
T

�

(51)

As a consequence, we have

p
nT
�

1
p

T

�2

θ εε(0) =

�

1
nT

n
∑

i=1

Ii

�−1
�

Op

�

1
p

nT

�

+Op

�

1
p

T 3

�

+Op

�s

n
T 5

��

+

�

1
nT

n
∑

i=1

Ii

�−1
�

Op

�

1
p

nT 2

�

+Op

�

1
T 2

��

Under the conditions that n, T →∞ and n/T → c ∈ (0,∞), the distribution of

θ εε(0) becomes degenerate at 0.

(c) The last term in the Taylor series expansion (29) can be shown to be op(1). This

step mimics the derivation in Hahn and Kuersteiner (2011).
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